Fructose-1,6-diphosphatase activity in brown adipose tissue of the developing rat. 1977

D W Seccombe, and P Hahn, and J P Skála

An enzyme activity capable of converting fructose-1,6-diphosphate to fructose-6-phosphate was demonstrated to present in crude tissue extracts from brown adipose tissue of the rat. Mg2+ was essential for the expression of activity. EDTA (0.5 mM) increased the activity by 30%. Fructose-1,6-diphosphate in concentrations of 1 and 10 mM inhibits activity by 30% and 60% respectively. A 65% inhibition was observed in the presence of 0.2 micrometer 5' AMP. The activity of the enzyme was measured in rat brown adipose tissue at different stages of development. It rises sharply between day 2 and day 6 and continues to increase reaching a maximum between 6 and 11 days. Thereafter the activity gradually declines to values observed prenatally. The normal developmental rise in activity could be prevented by chemical sympathectomy on day 2. This procedure had no effect when carried out on day 9. There was a significant increase in enzyme activity after cold adaptation. The possible physiological significance of this enzyme in brown adipose tissue is discussed.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D005260 Female Females
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D W Seccombe, and P Hahn, and J P Skála
August 1972, Comparative biochemistry and physiology. B, Comparative biochemistry,
D W Seccombe, and P Hahn, and J P Skála
January 1977, Indian journal of experimental biology,
D W Seccombe, and P Hahn, and J P Skála
February 1958, Experimental cell research,
D W Seccombe, and P Hahn, and J P Skála
August 1971, Klinische Wochenschrift,
D W Seccombe, and P Hahn, and J P Skála
April 1977, American journal of diseases of children (1960),
D W Seccombe, and P Hahn, and J P Skála
January 1995, Journal of inherited metabolic disease,
D W Seccombe, and P Hahn, and J P Skála
August 1984, Clinica chimica acta; international journal of clinical chemistry,
D W Seccombe, and P Hahn, and J P Skála
April 1993, Clinica chimica acta; international journal of clinical chemistry,
D W Seccombe, and P Hahn, and J P Skála
November 1962, Biochemical and biophysical research communications,
D W Seccombe, and P Hahn, and J P Skála
June 1975, The New England journal of medicine,
Copied contents to your clipboard!