Two distinct alpha 1-adrenoceptor subtypes involved in noradrenaline contraction of the rabbit thoracic aorta. 1990

I Muramatsu, and S Kigoshi, and M Oshita
Department of Pharmacology, Fukui Medical School, Matsuoka, Japan.

1. Recently, alpha 1-adrenoceptors in blood vessels have been classified into three subtypes (alpha 1H, alpha 1L and alpha 1N). We examined which subtype (or subtypes) is involved in the noradrenaline-induced contraction of rabbit thoracic aorta. 2. Noradrenaline produced a concentration-dependent contraction in the rabbit isolated thoracic aorta. Prazosin antagonized the contractions to noradrenaline, resulting in a rightward displacement of the concentration-response curve. However, the shift was not proportional to the concentration of prazosin; Schild plots showed that the inhibition by prazosin was biphasic, implying that noradrenaline acted through two receptor populations. Two affinity constants (pKB values of 10.02 and 8.83) were determined for prazosin at these sites. 3. However, under continuous treatment with 1 nM prazosin, or in strips pretreated with chlorethylclonidine (CEC; an alpha 1H inactivating agent) to remove the contribution of one receptor population, prazosin showed a single pKB or pA2 value of approximately 8.3. 4. Yohimbine also produced biphasic antagonism of noradrenaline-induced contractions, resulting in two affinity constants (pKB = 6.52 and 6.17). However, a monophasic Schild plot was obtained for yohimbine either in the presence of 1 nM prazosin (pA2 = 6.08) or in strips pretreated with CEC (pA2 = 6.03). 5. The Schild plot for HV723 (a selective alpha 1N-antagonist) yielded a monophasic slope (pKB = 8.47) and the inhibition was not affected by 1 nM prazosin or CEC-pretreatment. 6. [3H]-prazosin bound to alpha 1-adrenoceptors of the aortic membrane preparations with two different affinities (pKD = 9.94 and 8.37). The high but not the low affinity site was completely masked by 1 nM prazosin and inactivated by pretreatment with CEC. 7. These results strongly suggest that noradrenaline-induced contraction of the rabbit thoracic aorta is mediated through two distinct alpha l-adrenoceptor subtypes, designated alpha 1H and (alpha lL*

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D005260 Female Females
D000097 Acetonitriles Compounds in which a methyl group is attached to the cyano moiety. Cyanomethane,Cyanomethanes,Ethane Nitriles,Methyl Cyanide,Methyl Cyanides,Cyanide, Methyl,Cyanides, Methyl,Nitriles, Ethane
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Muramatsu, and S Kigoshi, and M Oshita
January 1990, British journal of clinical pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
November 1995, British journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
November 1994, European journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
July 1993, Japanese journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
January 1992, Japanese journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
December 1995, European journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
October 1992, European journal of pharmacology,
I Muramatsu, and S Kigoshi, and M Oshita
December 2003, European journal of pharmacology,
Copied contents to your clipboard!