Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates. 2009

Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
Department of Organ Formation, Institute of Molecular Embryology and Genetics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan.

Vertebrates show diverse sexual characters in sexually attractive and reproductive organs, which are regulated by steroid hormones, particularly androgens. However, the evolutionary history of androgen receptor (AR) gene remains largely unknown on the basis of phylogenic and functional analyses. To elucidate the evolutionary history and functional diversification of AR genes in vertebrates, we cloned the AR cDNAs from a shark, basal ray-finned fishes (Actinopterygii), namely bichir and sturgeon (Acipenseriformes), and teleosts including a basal teleost, arowana (Osteoglossiformes). Molecular phylogenetic analysis revealed that the gene duplication event that gave rise to two different teleost ARs (alpha and beta) likely occurred in the actinopterygian lineage leading to teleosts after the divergence of Acipenseriformes but before the split of Osteoglossiformes, which is compatible with the phylogenetic timing of teleost-specific genome duplication. Searching for AR genes in the medaka genome indicated that the teleost AR gene duplication has been associated with the duplication between chromosomes 10 and 14. Our functional analysis revealed that the shark AR activates the target gene via androgen response element by classical androgens. The teleost ARalpha showed the unique intracellular localization with a significantly higher transactivating capacity than that by teleost ARbeta. These findings indicate that the most ancient type of AR, as activated by the classical androgens as ligands, emerged before the Chondrichthyes-Osteichthyes split, and the AR gene was duplicated during the teleost-specific genome duplication event. We report here for the first time the accurate evolutionary history of AR gene and functional characterization of AR duplicates in teleost lineage.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009990 Oryzias The only genus in the family Oryziinae, order BELONIFORMES. Oryzias are egg-layers; other fish of the same order are livebearers. Oryzias are used extensively in testing carcinogens. Japanese Medaka,Killifish, Japanese,Medaka,Japanese Killifish,Japanese Rice Fish,Medaka Killifish,Oryzias latipes,Oryziinae,Killifish, Medaka,Medakas
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
April 2024, Current biology : CB,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
September 2001, Proceedings of the National Academy of Sciences of the United States of America,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
April 2015, Nature,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
April 2022, Scientific reports,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
June 2023, Journal of evolutionary biology,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
May 2010, PloS one,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
February 2003, Science (New York, N.Y.),
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
September 2013, Immunogenetics,
Yukiko Ogino, and Hironori Katoh, and Shigehiro Kuraku, and Gen Yamada
January 2015, International journal of biological sciences,
Copied contents to your clipboard!