Growth hormone-activated STAT5 may indirectly stimulate IGF-I gene transcription through HNF-3{gamma}. 2009

Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA.

IGF-I is abundantly expressed in the liver under the stimulation of GH. We showed previously that expression of hepatocyte nuclear factor (HNF)-3gamma, a liver-enriched transcription factor, was strongly stimulated by GH in bovine liver. In this study, we determined whether GH-increased HNF-3gamma might contribute to GH stimulation of IGF-I gene expression in bovine liver and the underlying mechanism. A sequence analysis of the bovine IGF-I promoter revealed three putative HNF-3 binding sites, which all appear to be conserved in mammals. Chromatin immunoprecipitation assays showed that GH injection increased binding of HNF-3gamma to the IGF-I promoter in bovine liver. Gel-shift assays indicated that one of the three putative HNF-3 binding sites, HNF-3 binding site 1, bound to the HNF-3gamma protein from bovine liver with high affinity. Cotransfection analyses demonstrated that this HNF-3 binding site was essential for the transcriptional response of the IGF-I promoter to HNF-3gamma in CHO cells and to GH in primary mouse hepatocytes. Using similar approaches, we found that GH increased binding of the signal transducer and activator of transcription 5 (STAT5) to the HNF-3gamma promoter in bovine liver, that this binding occurred at a conserved STAT5 binding site, and that this STAT5 binding site was necessary for the HNF-3gamma promoter to respond to GH. Taken together, these results suggest that in addition to direct action, GH-activated STAT5 may also indirectly stimulate IGF-I gene transcription in the liver by directly enhancing the expression of the HNF-3gamma gene.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
February 1999, FEBS letters,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
June 1992, Genomics,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
January 2013, Frontiers in endocrinology,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
January 1990, Molecular endocrinology (Baltimore, Md.),
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
April 2010, Molecular endocrinology (Baltimore, Md.),
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
October 1997, Molecular and cellular endocrinology,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
February 2006, The Journal of biological chemistry,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
December 2000, Journal of animal science,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
August 2019, Endocrine,
Satyanarayana Eleswarapu, and Xiaomei Ge, and Ying Wang, and Jie Yu, and Honglin Jiang
January 2007, Cell biochemistry and biophysics,
Copied contents to your clipboard!