The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. 2009

Mauricio G Mateu
Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. mgarcia@cbm.uam.es

The capsid protein (CA) of HIV-1 is composed of two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD). During the assembly of the immature HIV-1 particle, both CA domains constitute a part of the Gag polyprotein, which forms a spherical capsid comprising up to 5000 radially arranged, extended subunits. Gag-Gag interactions in the immature capsid are mediated in large part by interactions between CA domains, which are involved in the formation of a lattice of connected Gag hexamers. After Gag proteolysis during virus maturation, the CA protein is released, and approximately 1000-1500 free CA subunits self-assemble into a truncated cone-shaped capsid. In the mature capsid, NTD-NTD and NTD-CTD interfaces are involved in the formation of CA hexamers, and CTD-CTD interfaces connect neighboring hexamers through homodimerization. The CA-CA interfaces involved in the assembly of the immature capsid and those forming the mature capsid are different, at least in part. CA appears to have evolved an extraordinary conformational plasticity, which allows the creation of multiple CA-CA interfaces and the occurrence of CA conformational switches. This minireview focuses on recent structure-function studies of the diverse CA-CA interactions and interfaces involved in HIV-1 assembly. Those studies are leading to a better understanding of molecular recognition events during virus morphogenesis, and are also relevant for the development of anti-HIV drugs that are able to interfere with capsid assembly or disassembly.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D019065 Virus Assembly The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE. Viral Assembly,Assembly, Viral,Assembly, Virus
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein
D036022 Capsid Proteins Proteins that form the CAPSID of VIRUSES. Procapsid Protein,Procapsid Proteins,Viral Coat Protein,Viral Coat Proteins,Viral V Antigens,Viral V Proteins,Capsid Protein,Viral Outer Coat Protein,Antigens, Viral V,Coat Protein, Viral,V Antigens, Viral,V Proteins, Viral

Related Publications

Mauricio G Mateu
December 2011, Indian journal of virology : an official organ of Indian Virological Society,
Copied contents to your clipboard!