Analysis of the mechanism of isoniazid-induced developmental toxicity with frog embryo teratogenesis assay: Xenopus (FETAX). 1990

D J Fort, and J A Bantle
Department of Zoology, Oklahoma State University, Stillwater 74078.

The developmental toxicity of isoniazid (INH) and the metabolites acetylhydrazide (AH) and isonicotinic acid (INA) were examined with the frog embryo teratogenesis assay-Xenopus (FETAX). Late Xenopus laevis blastulae were exposed to INH, AH, and INA for 96 h in two separate static-renewal tests with and without the presence of three differently induced metabolic activation systems (MAS). The MAS consisted of uninduced, Aroclor 1254-induced, and INH-induced rat liver microsomes. Addition of the INH-induced MAS decreased the 96 h LC50 of INH and AH approximately 1.6-fold and 7.9-fold, respectively. The 96 h EC50 (malformation) of INH was virtually unaffected; however, the INH-MAS decreased the teratogenic index (TI) [96 h LC50/96 h EC50 (malformation)] nearly 1.8-fold. The 96 h EC50 (malformation) of AH increased approximately 2.0-fold, decreasing the teratogenic index value 15.8-fold. INA yielded a teratogenic index value of 2.5. Neither the uninduced MAS nor the Aroclor 1254-induced MAS had an effect on any of the compounds tested and none of the MAS affected the developmental toxicity of INA. Results from this study suggest that mixed functional oxidase metabolism may alter the developmental toxicity of INH in vitro by producing a more embryolethal, but less teratogenic metabolite(s) than INH or AH themselves. Results are indicative of the utility and versatility of FETAX in evaluating toxicological mechanisms of teratogenesis in vitro.

UI MeSH Term Description Entries
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D007539 Isonicotinic Acids Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic Acid,Acid, Isonicotinic,Acids, Isonicotinic
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005260 Female Females
D006834 Hydrazines Substituted derivatives of hydrazine (formula H2N-NH2). Hydrazide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D J Fort, and J A Bantle
January 1995, Methods in molecular biology (Clifton, N.J.),
D J Fort, and J A Bantle
August 1991, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
D J Fort, and J A Bantle
July 1998, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
D J Fort, and J A Bantle
January 2002, Journal of applied toxicology : JAT,
D J Fort, and J A Bantle
January 2000, Teratogenesis, carcinogenesis, and mutagenesis,
D J Fort, and J A Bantle
August 2018, Cold Spring Harbor protocols,
D J Fort, and J A Bantle
February 1992, Journal of applied toxicology : JAT,
Copied contents to your clipboard!