Effects of copper supplementation on the structure and content of elements in kidneys of mosaic mutant mice. 2010

Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland. lena@zuk.iz.uj.edu.pl

Menkes disease is an effect of ATP7A gene mutation in humans, coding the Cu-ATP-ase which is essential in intestinal copper absorption and its subsequent transfer to circulation. This mutation results in a deficiency of copper in all tissues except the epithelia of intestine and kidney tubules. Subcutaneous injection of copper ions is the main therapy for Menkes patients. Mosaic (Atp7a(mo-ms)) mice closely simulate the situation in Menkes disease. The aim of this study was to evaluate the changes in structure and element content in kidneys of mosaic mice after copper supplementation. Hematoxylin-eosin staining was used to analyze tissue morphology and atomic absorption spectrometry to estimate Cu and Zn content. X-ray microanalysis was performed to measure Na, Mg, P, Cl, and K content in the cells of the proximal and distal tubules. Copper administration lengthened the lifespan of the mutants but led to its high accumulation and results in severe kidney damage. Karyomegalia, necrosis of tubular and Bowman's capsule epithelium, lesions, and atrophy of glomeruli were observed in the treated mutants. Copper treatment afterwards led to sclerosis of glomeruli and tubules enhanced proliferation of epithelial cells and formation of both polycystic and papillary carcinoma patterns in kidney. We suggest that copper excess may impair the activity of Na(+)/K(+) ATP-ase in renal tubules of ms/- males. The content of Mg, P, and Cl in kidneys in mutants was also changed after copper administration.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007706 Menkes Kinky Hair Syndrome An inherited disorder of copper metabolism transmitted as an X-linked trait and characterized by the infantile onset of HYPOTHERMIA, feeding difficulties, hypotonia, SEIZURES, bony deformities, pili torti (twisted hair), and severely impaired intellectual development. Defective copper transport across plasma and endoplasmic reticulum membranes results in copper being unavailable for the synthesis of several copper containing enzymes, including PROTEIN-LYSINE 6-OXIDASE; CERULOPLASMIN; and SUPEROXIDE DISMUTASE. Pathologic changes include defects in arterial elastin, neuronal loss, and gliosis. (From Menkes, Textbook of Child Neurology, 5th ed, p125) Hypocupremia, Congenital,Kinky Hair Syndrome,Menkes Syndrome,Steely Hair Syndrome,Congenital Hypocupremia,Copper Transport Disease,Kinky Hair Disease,Menkea Syndrome,Menkes Disease,Menkes' Disease,Steely Hair Disease,X-Linked Copper Deficiency,Congenital Hypocupremias,Copper Deficiencies, X-Linked,Copper Deficiency, X-Linked,Copper Transport Diseases,Deficiencies, X-Linked Copper,Deficiency, X-Linked Copper,Disease, Copper Transport,Disease, Steely Hair,Diseases, Copper Transport,Diseases, Kinky Hair,Diseases, Menkes',Diseases, Steely Hair,Hair Diseases, Kinky,Hair Diseases, Steely,Hypocupremias, Congenital,Kinky Hair Diseases,Menkea Syndromes,Menkes' Diseases,Steely Hair Diseases,Steely Hair Syndromes,Syndrome, Menkea,Syndrome, Steely Hair,Syndromes, Menkea,Syndromes, Steely Hair,Transport Disease, Copper,Transport Diseases, Copper,X Linked Copper Deficiency,X-Linked Copper Deficiencies
D008136 Longevity The normal length of time of an organism's life. Length of Life,Life Span,Lifespan,Life Spans,Lifespans
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D005260 Female Females
D000073840 Copper-Transporting ATPases P-type ATPases which transport copper ions across membranes in prokaryotic and eukaryotic cells. They possess a conserved CYSTEINE-HISTIDINE-SERINE (CPx) amino acid motif within their transmembrane helices that functions in cation translocation and catalytic activation, and an N-terminal copper-binding CxxC motif that regulates enzyme activity. They play essential roles in intracellular copper homeostasis through regulating the uptake, efflux and storage of copper ions, and in cuproprotein biosynthesis. ATP7B Cu-Binding P Type ATPase,ATPase, Cu++ Transporting, beta Polypeptide (Wilson Disease),Copper-Transporting ATPase,Copper-Transporting ATPase 1,Copper-Transporting ATPase 2,Copper-Transporting Adenosine Triphosphatases,Cu(+)-Transporting ATPases,Cu-Transporting ATPases,Menkes Disease-Associated Protein,Pineal Night-Specific ATPase,Wilson Disease Cu-Binding P Type ATPase,ATP7A Protein,ATPase Copper Transporting alpha,Copper Pump 1,PINA Enzyme,Wilson Disease Protein,ATP7B Cu Binding P Type ATPase,ATPase 1, Copper-Transporting,ATPase 2, Copper-Transporting,ATPase, Copper-Transporting,ATPase, Pineal Night-Specific,ATPases, Copper-Transporting,ATPases, Cu-Transporting,Adenosine Triphosphatases, Copper-Transporting,Copper Transporting ATPase,Copper Transporting ATPase 1,Copper Transporting ATPase 2,Copper Transporting ATPases,Copper Transporting Adenosine Triphosphatases,Cu Transporting ATPases,Menkes Disease Associated Protein,Night-Specific ATPase, Pineal,Pineal Night Specific ATPase,Triphosphatases, Copper-Transporting Adenosine,Wilson Disease Cu Binding P Type ATPase
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
July 1976, Science (New York, N.Y.),
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
September 1975, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
July 2001, Wei sheng yan jiu = Journal of hygiene research,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
October 1979, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
January 1972, Voprosy pitaniia,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
June 2014, Biological trace element research,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
October 1973, Experimental cell research,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
January 2014, PloS one,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
May 1989, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Małgorzata Lenartowicz, and Renata Windak, and Grzegorz Tylko, and Małgorzata Kowal, and Józefa Styrna
January 1972, The Journal of pathology,
Copied contents to your clipboard!