Liquid perfluorochemical inhibits inducible nitric oxide synthase expression and nitric oxide formation in lipopolysaccharide-treated RAW 264.7 macrophages. 2009

Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan.

Partial liquid ventilation with various types of perfluorocarbon (PFC) has been shown to be beneficial in treating acute lung injury, a clinical outcome that may involve the anti-inflammatory activity of PFC. FC-77 is a type of PFC with relatively higher vapor pressure and evaporative loss than other PFCs during partial liquid ventilation. Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been proposed to play a crucial role in the pathogenesis of inflammatory diseases. However, whether the iNOS/NO pathway is affected by FC-77 is unknown. Thus, the aim of this study was to investigate whether FC-77 inhibits iNOS expression and NO production in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. We found that treatment with FC-77 significantly attenuated LPS-induced iNOS expression/activity and production of NO and reactive oxygen species (ROS). FC-77 also attenuated LPS-induced pro-inflammatory cytokine formation, but enhanced interleukin-10 production. Furthermore, the LPS-induced degradation of cytosolic IkappaB-alpha and activation of nuclear transcription factor-kappaB (NF-kappaB) were also inhibited by FC-77. In conclusion, the present study is the first to demonstrate that FC-77 decreases LPS-induced NO production in macrophages, which may be associated with the suppression of pro-inflammatory cytokines, and ROS production, as well as NF-kappaB activation. These results also provide a novel explanation for its anti-inflammatory activity.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005466 Fluorocarbons Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions, and fluorocarbon blood substitutes. Perfluorinated and related polyfluorinated chemicals are referred to as PFAS and are defined as chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated. Fluorocarbon,Fluorocarbon Emulsion,Fluorocarbon Emulsions,Fluorotelomer Phosphate Esters,N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per- and Polyfluoroalkyl Substances,PFC Perfluorinated Chemicals,PFECAs Perfluoropolyether Carboxylic Acids,Per- and Polyfluoroalkyl Substances,Perfluoroalkane Sulfonamides,Perfluoroalkyl Carboxylates,Perfluoroalkyl Ether Carboxylates,Perfluoroalkyl Polyether Carboxylates,Perfluorocarbon,Perfluorocarbons,Perfluoropolyether Carboxylic Acids,Polyfluorocarbons,Fluorinated Telomer Alcohols,Fluoro-Telomer Alcohols,Polyfluorinated Telomer Alcohols,Telomer Fluorocarbons,Acids, Perfluoropolyether Carboxylic,Alcohols, Fluorinated Telomer,Alcohols, Fluoro-Telomer,Alcohols, Polyfluorinated Telomer,Carboxylates, Perfluoroalkyl,Carboxylates, Perfluoroalkyl Ether,Carboxylates, Perfluoroalkyl Polyether,Carboxylic Acids, Perfluoropolyether,Chemicals, PFC Perfluorinated,Emulsion, Fluorocarbon,Emulsions, Fluorocarbon,Esters, Fluorotelomer Phosphate,Ether Carboxylates, Perfluoroalkyl,Fluoro Telomer Alcohols,Fluorocarbons, Telomer,N Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per and Polyfluoroalkyl Substances,Per and Polyfluoroalkyl Substances,Perfluorinated Chemicals, PFC,Phosphate Esters, Fluorotelomer,Polyether Carboxylates, Perfluoroalkyl,Sulfonamides, Perfluoroalkane,Telomer Alcohols, Fluorinated,Telomer Alcohols, Polyfluorinated

Related Publications

Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
May 2000, Biochemical and biophysical research communications,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
October 1998, The Journal of biological chemistry,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
February 2001, Pharmaceutical research,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
February 2006, Life sciences,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
September 2002, Molecular pharmacology,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
December 2001, The Journal of biological chemistry,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
August 1994, Biochemical and biophysical research communications,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
January 2014, Mediators of inflammation,
Li-Ping Chang, and Yuan-Shu Lai, and Chang-Jer Wu, and Tz-Chong Chou
March 2004, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!