| D007854 |
Lead |
A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb. |
|
|
| D002623 |
Chemistry Techniques, Analytical |
Methodologies used for the isolation, identification, detection, and quantitation of chemical substances. |
Analytical Chemistry Techniques,Analytical Chemistry Methods,Analytical Chemistry Method,Analytical Chemistry Technique,Chemistry Method, Analytical,Chemistry Methods, Analytical,Chemistry Technique, Analytical,Method, Analytical Chemistry,Methods, Analytical Chemistry,Technique, Analytical Chemistry,Techniques, Analytical Chemistry |
|
| D003124 |
Colorimetry |
Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) |
|
|
| D006046 |
Gold |
A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts. |
|
|
| D014874 |
Water Pollutants, Chemical |
Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. |
Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water |
|
| D053768 |
Metal Nanoparticles |
Nanoparticles produced from metals whose uses include biosensors, optics, and catalysts. In biomedical applications the particles frequently involve the noble metals, especially gold and silver. |
Metal Nanocrystals,Metallic Nanocrystals,Metallic Nanoparticles,Metal Nanocrystal,Metal Nanoparticle,Metallic Nanocrystal,Metallic Nanoparticle,Nanocrystal, Metal,Nanocrystal, Metallic,Nanocrystals, Metal,Nanocrystals, Metallic,Nanoparticle, Metal,Nanoparticle, Metallic,Nanoparticles, Metal,Nanoparticles, Metallic |
|
| D019032 |
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization |
A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. |
Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry |
|
| D020349 |
Surface Plasmon Resonance |
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding. |
Plasmon Resonance, Surface,Plasmon Resonances, Surface,Resonance, Surface Plasmon,Resonances, Surface Plasmon,Surface Plasmon Resonances |
|