Multiple roles for the tectorial membrane in the active cochlea. 2010

Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. A.Lukashkin@sussex.ac.uk <A.Lukashkin@sussex.ac.uk>

This review is concerned with experimental results that reveal multiple roles for the tectorial membrane in active signal processing in the mammalian cochlea. We discuss the dynamic mechanical properties of the tectorial membrane as a mechanical system with several degrees of freedom and how its different modes of movement can lead to hair-cell excitation. The role of the tectorial membrane in distributing energy along the cochlear partition and how it channels this energy to the inner hair cells is described.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004548 Elasticity Resistance and recovery from distortion of shape.
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013016 Sound A type of non-ionizing radiation in which energy is transmitted through solid, liquid, or gas as compression waves. Sound (acoustic or sonic) radiation with frequencies above the audible range is classified as ultrasonic. Sound radiation below the audible range is classified as infrasonic. Acoustic Waves,Elastic Waves,Sonic Radiation,Sound Waves,Acoustic Wave,Elastic Wave,Radiation, Sonic,Radiations, Sonic,Sonic Radiations,Sound Wave,Sounds,Wave, Acoustic,Wave, Elastic,Wave, Sound,Waves, Acoustic,Waves, Elastic,Waves, Sound

Related Publications

Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 2015, Biophysical journal,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
August 1990, Hearing research,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
February 1996, Die Naturwissenschaften,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
May 1979, Science (New York, N.Y.),
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1987, Anatomy and embryology,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1983, Acta oto-laryngologica,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1980, Anatomy and embryology,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1987, Hearing research,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1979, Acta oto-laryngologica,
Andrei N Lukashkin, and Guy P Richardson, and Ian J Russell
January 1985, Hearing research,
Copied contents to your clipboard!