The molecular basis of vascular lumen formation in the developing mouse aorta. 2009

Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
Institute of Metabolic Physiology, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany.

In vertebrates, endothelial cells (ECs) form blood vessels in every tissue. Here, we investigated vascular lumen formation in the developing aorta, the first and largest arterial blood vessel in all vertebrates. Comprehensive imaging, pharmacological manipulation, and genetic approaches reveal that, in mouse embryos, the aortic lumen develops extracellularly between adjacent ECs. We show that ECs adhere to each other, and that CD34-sialomucins, Moesin, F-actin, and non-muscle Myosin II localize at the endothelial cell-cell contact to define the luminal cell surface. Resultant changes in EC shape lead to lumen formation. Importantly, VE-Cadherin and VEGF-A act at different steps. VE-Cadherin is required for localizing CD34-sialomucins to the endothelial cell-cell contact, a prerequisite to Moesin and F-actin recruitment. In contrast, VEGF-A is required for F-actin-nm-Myosin II interactions and EC shape change. Based on these data, we propose a molecular mechanism of in vivo vascular lumen formation in developing blood vessels.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic

Related Publications

Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
February 1983, Journal of embryology and experimental morphology,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
February 2009, Developmental cell,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
May 2012, Current opinion in hematology,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
April 2012, Cold Spring Harbor perspectives in medicine,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
January 2012, Cells, tissues, organs,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
December 2005, Development (Cambridge, England),
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
January 2006, Biochemical and biophysical research communications,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
June 1990, Seminars in cell biology,
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
January 2017, Pediatric nephrology (Berlin, Germany),
Boris Strilić, and Tomás Kucera, and Jan Eglinger, and Michael R Hughes, and Kelly M McNagny, and Sachiko Tsukita, and Elisabetta Dejana, and Napoleone Ferrara, and Eckhard Lammert
January 2011, International review of cell and molecular biology,
Copied contents to your clipboard!