The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development. 2010

Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

The protein beta-catenin plays a critically important role in establishing axial polarity during early animal development. In many organisms, beta-catenin is degraded preferentially on one side of the cleavage stage embryo. On the opposite side of the embryo, beta-catenin is stabilized and accumulates in the nucleus, where it functions in concert with members of the LEF/TCF family to activate the transcription of diverse target genes. Genes that are activated by beta-catenin play an essential role in the specification of endomesoderm and in the establishment of key signaling centers in the early embryo. In several organisms, the asymmetric distribution of maternal components of the canonical Wnt pathway has been shown to be responsible for the polarized stabilization of beta-catenin. In this study, we identified all Wnt and Wnt receptor mRNAs that are present in unfertilized sea urchin eggs and early embryos and analyzed their distributions along the primary (AV) axis. Our findings indicate that the asymmetric distribution of a maternal Wnt or Wnt receptor mRNA is unlikely to be a primary determinant of the polarized stabilization of beta-catenin along the AV axis. This contrasts sharply with findings in other organisms and points to remarkable evolutionary flexibility in the molecular mechanisms that underlie this otherwise very highly conserved patterning process.

UI MeSH Term Description Entries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051153 Wnt Proteins Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN. Wingless Type Protein,Wnt Factor,Wnt Protein,Wingless Type Proteins,Wnt Factors,Factor, Wnt,Protein, Wingless Type,Protein, Wnt,Type Protein, Wingless
D051176 beta Catenin A multi-functional catenin that participates in CELL ADHESION and nuclear signaling. Beta catenin binds CADHERINS and helps link their cytoplasmic tails to the ACTIN in the CYTOSKELETON via ALPHA CATENIN. It also serves as a transcriptional co-activator and downstream component of WNT PROTEIN-mediated SIGNAL TRANSDUCTION PATHWAYS. beta-Catenin,Catenin, beta
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019521 Body Patterning The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc. Axial Patterning (Embryology),Embryonic Pattern Formation,Polarity of Development,Body Pattern Formation,Body Pattern Specification,Embryonic Pattern Specification,Development Polarity,Embryonic Pattern Formations,Formation, Embryonic Pattern,Pattern Formation, Body,Pattern Formation, Embryonic,Pattern Specification, Body,Pattern Specification, Embryonic,Patterning, Axial (Embryology),Patterning, Body,Specification, Body Pattern,Specification, Embryonic Pattern

Related Publications

Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
July 1998, The International journal of developmental biology,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
February 1983, Proceedings of the National Academy of Sciences of the United States of America,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
January 2017, The International journal of developmental biology,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
December 2013, Gene expression patterns : GEP,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
April 1971, Journal of molecular biology,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
January 2008, Methods in molecular biology (Clifton, N.J.),
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
June 1979, The Journal of cell biology,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
July 1981, Developmental biology,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
January 2012, Ontogenez,
Rachel E Stamateris, and Kiran Rafiq, and Charles A Ettensohn
January 2000, Zygote (Cambridge, England),
Copied contents to your clipboard!