Actin and microtubule cytoskeleton interactions. 2009

Jan Petrásek, and Katerina Schwarzerová
Department of Plant Physiology, Faculty of Science, Charles University, Vinicná 5, 128 44 Prague 2, Czech Republic. petrasek@ueb.cas.cz

Plant cytoskeleton consists of two major networks of protein polymers, actin microfilaments (AFs) and microtubules (MTs). These networks perform numerous functions that are essential for cell division and for maintaining the integrity of cytoplasm required for intracellular transport and cell shape. Besides the more or less indirect cooperation between AFs and MTs, their direct interactions through specific physically interacting proteins has been well described in yeast, nematodes, insect and animal cells. Recently, promising candidates for corresponding homologous proteins have been identified in plants, although there is still lack of functional evidence for these interactions. Here we summarize recent advances in our knowledge about the candidate proteins or protein complexes that interact with both AFs and MTs and their role in fundamental cellular and developmental processes.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D016547 Kinesins A family of microtubule-associated mechanical adenosine triphosphatases, that uses the energy of ATP hydrolysis to move organelles along microtubules including mitosis, meiosis, and axonal transport. Kinesin,Kinesin Heavy-Chain Protein,Kinesin Light-Chain Protein,Kinesin Light-Chain Proteins,Kinesin Superfamily,Heavy-Chain Protein, Kinesin,Light-Chain Protein, Kinesin,Light-Chain Proteins, Kinesin,Protein, Kinesin Heavy-Chain,Protein, Kinesin Light-Chain,Proteins, Kinesin Light-Chain,Superfamily, Kinesin
D048430 Cell Shape The quality of surface form or outline of CELLS. Cell Shapes,Shape, Cell,Shapes, Cell
D048749 Cytokinesis The process by which the CYTOPLASM of a cell is divided. Cytoplasmic Division,Cytokineses,Cytoplasmic Divisions,Division, Cytoplasmic,Divisions, Cytoplasmic
D049108 Cell Enlargement Growth processes that result in an increase in CELL SIZE. Cell Growth in Size,Cell Size Growth,Enlargement, Cell,Growth, Cell Size,Growths, Cell Size,Size Growth, Cell

Related Publications

Jan Petrásek, and Katerina Schwarzerová
February 2007, Current opinion in cell biology,
Jan Petrásek, and Katerina Schwarzerová
February 1998, Journal of neuroscience research,
Jan Petrásek, and Katerina Schwarzerová
November 2010, The EMBO journal,
Jan Petrásek, and Katerina Schwarzerová
February 1994, Current opinion in cell biology,
Jan Petrásek, and Katerina Schwarzerová
May 2016, Bioarchitecture,
Jan Petrásek, and Katerina Schwarzerová
September 2018, Cellular and molecular life sciences : CMLS,
Jan Petrásek, and Katerina Schwarzerová
February 2021, Molecular biology of the cell,
Jan Petrásek, and Katerina Schwarzerová
May 2016, Development (Cambridge, England),
Jan Petrásek, and Katerina Schwarzerová
September 2014, Biochemical and biophysical research communications,
Jan Petrásek, and Katerina Schwarzerová
August 2015, Development (Cambridge, England),
Copied contents to your clipboard!