Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation. 2010

Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
Institute of Physics, Opole University, Opole, Poland. dariusz.man@uni.opole.pl

Penetration of the liposome membranes formed in the gel phase from DPPC (DPPC liposomes) and in the liquid-crystalline phase from egg yolk lecithin (EYL liposomes) by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and 16 DOXYL (2-ethyl-2-(15-methoxy-oxopentadecyl)-4,4-dimethyl-3-oxazolidinyloxy) spin probes has been investigated. The penetration process was followed by 120 hours at 24(0)C, using the electron spin resonance (ESR) method. The investigation of the kinetics of the TEMPO probe building into the membranes of both types of liposomes revealed differences appearing 30 minutes after the start of the experiment. The number of TEMPO particles built into the EYL liposome membranes began to clearly rise, aiming asymptotically to a constant value after about 100 minutes, whereas the number of the TEMPO particles built into the DPPC liposome membranes was almost constant in time. The interpretation of the obtained experimental results was enriched with those of computer simulation, following the behavior of the polar heads (dipoles) of the lipid particles forming a lipid layer due to the change in the value of the model parameter, k, determining the mobility of the dipoles. The possibility of the formation of an irregular ordering of the polar part of lipid membranes was proved, which leads to the appearance of spaces filled with of water for k > 0.4. The appearance of these defects enables the penetration of the bilayer by the TEMPO particles. The limited mobility of lipid polar heads (k < 0.2) prevents the appearance of such areas facilitating the penetration of the lipid membrane by alien particles in the gel phase.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl

Related Publications

Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
February 1970, Journal of theoretical biology,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
September 1993, Biophysical journal,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
February 2001, Free radical biology & medicine,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
November 2010, Journal of nanoscience and nanotechnology,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
May 2024, Nanoscale,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
October 1987, Biochemistry,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
August 1997, Current opinion in structural biology,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
September 1996, Biophysical journal,
Dariusz Man, and Ryszard Olchawa, and Krystian Kubica
October 1993, Science (New York, N.Y.),
Copied contents to your clipboard!