Physical and genetic characterization of deletion mutants of simian virus 40 constructed in vitro. 1977

C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg

Mutants of simian virus 40 (SV40), with deletions ranging in size from fewer than 3 to 750 base pairs located throughout the SV40 genome, were obtained by infecting CV-1P cells with linear SV40 DNA and DNA of an appropriate helper virus. The linear DNA was obtained by complete cleavage of closed circular DNA with Hae II or Bam HI endonuclease or partial cleavage with either Hae III endonuclease or nuclease S1, followed, in some cases, by mild digestion with phage lambda 5' -exonuclease. The following mutants with deletions in the late region of the SV40 genome were obtained and characterized. Ten, containing deletions at the Hae II endonuclease site (map location 0.83), define a new genetic complementation group, E, grow extremely slowly without helper virus, and cause alterations only in VP2. Two mutants with deletions in the region 0.92 to 0.945 affect both VP2 and VP3, demonstrating that VP3 shares sequences with the C-terminal portion of VP2. The mutant with a deletion at 0.93 is the first deletion mutant in the D complementation group and is also temperature sensitive; the mutant with a deletion at 0.94 is viable and grows normally. Three mutants with deletions at the EcoRI endonuclease site (0/1.0) and eleven with deletions at the BamHI endonuclease site (0.15) fall into the B/C complementation group. Six additional mutants with deletions at the BamHI endonuclease site are viable, growing more slowly than wild type. VP1 is the only polypeptide affected by mutants in the B/C group. A mutant with a deletion of the region 0.72 to 0.80 has a polar effect, failing to express the E, D, and B/C genes. Mutants with deletions in the early region (0.67 counterclockwise to 0.17) at 0.66 to 0.59, 0.48, 0.47, 0.33, and 0.285 to 0.205 are all members of the A complementation group. Thus, the A gene is the only viral gene in the early region whose expression is necessary for productive infection of permissive cells. Since mutants with deletions in the region 0.59 to 0.54 are viable, two separate regions are essential for expression of the gene A function: 0.66 to 0.59 and 0.54 to 0.21. Mutants with deletions at 0.21 and 0.18 are viable. Approximate map locations of SV40 genes and possible models for their regulation are discussed.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006378 Helper Viruses Viruses which enable defective viruses to replicate or to form a protein coat by complementing the missing gene function of the defective (satellite) virus. Helper and satellite may be of the same or different genus. Helper Virus,Virus, Helper,Viruses, Helper
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
July 1982, Journal of virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
December 1976, Virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
May 1976, Journal of virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
March 1983, Molecular and cellular biology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
January 1969, Journal of virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
January 1979, Proceedings of the National Academy of Sciences of the United States of America,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
August 1972, Virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
June 1976, Journal of virology,
C N Cole, and T Landers, and S P Goff, and S Manteuil-Brutlag, and P Berg
July 1979, Journal of molecular biology,
Copied contents to your clipboard!