Influence of fasting and refeeding on 3,3',5'-triiodothyronine metabolism in man. 1991

J S LoPresti, and D Gray, and J T Nicoloff
Department of Medicine, University of Southern California Medical School, Los Angeles 90033.

To determine the influence of prolonged fasting and refeeding on rT3 metabolism in man, five euthyroid obese subjects underwent a 13-day fast, followed by a refeeding period. Each patient received an iv dose of 25 muCi [125I]rT3 during the fed control period, on days 7 and 13 of the fast, and on the fourth day after refeeding with a regular diet. Serial blood and urine samples were obtained to determine serum rT3 clearance and production rates and the urinary tracer rT3 deiodination fraction. Significant increases in serum rT3 values were noted by day 7 and remained elevated for the duration of the fast (P less than 0.01). Normalization of rT3 levels occurred after 4 days of refeeding. Both 7 and 13 days of fasting decreased rT3 clearance [132.6 +/- 8.3 L/day (P less than 0.001) and 132.2 +/- 9.5 L/day (P less than 0.001), respectively] without changing rT3 production (36.8 +/- 5.3 and 33.0 +/- 3.7 nmol/D, respectively) compared to control values (207.0 +/- 10.9 L/day and 31.8 +/- 3.8 nmol/day, respectively). Refeeding did not restore rT3 clearance (151.2 +/- 6.9 L/day; P less than 0.002), but significantly reduced blood rT3 production (18.4 +/- 3.8 nmol/day; P less than 0.003). The fractional deiodination of rT3 was significantly reduced on day 7 (42.5 +/- 4.6%; P less than 0.01) and day 13 (41.9 +/- 3.7%; P less than 0.01) of fasting compared to the control value (69.2 +/- 2.8%), while refeeding only partially restored deiodination to baseline (48.4 +/- 5.1%; P less than 0.04). The clearance of rT3 was highly dependent on the fractional deiodination rate (r = 0.83; P less than 0.001). Although rT3 production remained constant during fasting, reduced rT3 production was seen on the fourth day of refeeding. This unique observation explained the fall in serum rT3 to prefasting levels after 4 days of refeeding when rT3 clearance was still inhibited. This study, in context with previous investigations, indicates that T4 conversion to circulating T3 and rT3 in fasting is a highly complex and multifaceted process requiring further investigation to elucidate the mechanism responsible for these alterations.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005260 Female Females
D005502 Food Substances taken in by the body to provide nourishment. Foods
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone

Related Publications

J S LoPresti, and D Gray, and J T Nicoloff
December 1978, The Journal of clinical endocrinology and metabolism,
J S LoPresti, and D Gray, and J T Nicoloff
September 1959, Endocrinology,
J S LoPresti, and D Gray, and J T Nicoloff
January 1956, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J S LoPresti, and D Gray, and J T Nicoloff
January 1979, Acta medica Scandinavica. Supplementum,
J S LoPresti, and D Gray, and J T Nicoloff
May 1987, Acta endocrinologica,
J S LoPresti, and D Gray, and J T Nicoloff
May 1977, The Journal of clinical endocrinology and metabolism,
J S LoPresti, and D Gray, and J T Nicoloff
June 1977, Acta endocrinologica,
Copied contents to your clipboard!