Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. 2010

Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA.

Hypophysiotropic GnRH neurons are located in the preoptic area and ventral hypothalamus of sexually mature vertebrates. In several species, the embryonic origin of hypophysiotropic GnRH neurons remains unclear. Using the Tg(GnRH3:EGFP) zebrafish line, in which GnRH3 neurons express EGFP, GnRH3 neurons in the olfactory region were specifically and individually ablated during early development using laser pulses. After ablation, the olfactory region maintained the capacity to regenerate GnRH3 neurons. However, this capacity was time-limited. When ablation of GnRH3 cells was conducted at 2 d after fertilization, high regeneration rates were observed, but regeneration capacity significantly decreased when ablation was performed at 4 or 6 d after fertilization. Unilateral GnRH3 neuron ablation results in unilateral soma presence. These unilateral somata are capable of projecting fiber extensions bilaterally. Successful bilateral GnRH3 soma ablation during development resulted in complete lack of olfactory, terminal nerve, preoptic area, and hypothalamic GnRH3 neurons and fibers in 12-wk-old animals. Mature animals lacking GnRH3 neurons exhibited arrested oocyte development and reduced average oocyte diameter. Animals in which GnRH3 neurons were partially ablated exhibited normal oocyte development; however, their fecundity was significantly reduced. These findings demonstrate that the hypophysiotropic GnRH3 populations in zebrafish consist of neurons that originate in the olfactory region during early development. The presence of GnRH3 neurons of olfactory region origin in reproductively mature zebrafish is a prerequisite for normal oocyte development and reproduction.

UI MeSH Term Description Entries
D007247 Infertility, Female Diminished or absent ability of a female to achieve conception. Sterility, Female,Sterility, Postpartum,Sub-Fertility, Female,Subfertility, Female,Female Infertility,Female Sterility,Female Sub-Fertility,Female Subfertility,Postpartum Sterility,Sub Fertility, Female
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011761 Pyrrolidonecarboxylic Acid A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism. 5-Oxoproline,Pidolic Acid,Pyroglutamic Acid,5-Ketoproline,5-Oxopyrrolidine-2-Carboxylic Acid,Magnesium Pidolate,Pyroglutamate,Pidolate, Magnesium
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell

Related Publications

Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
September 2007, Seminars in reproductive medicine,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
November 2008, Molecular endocrinology (Baltimore, Md.),
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
April 2004, Trends in endocrinology and metabolism: TEM,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
January 2005, Endocrinology,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
March 2006, Endocrinology,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
May 2021, International journal of molecular sciences,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
January 1977, International review of physiology,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
February 1994, Biology of reproduction,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
January 2013, Frontiers in endocrinology,
Eytan Abraham, and Ori Palevitch, and Yoav Gothilf, and Yonathan Zohar
March 1996, Trends in endocrinology and metabolism: TEM,
Copied contents to your clipboard!