Volatile anesthetics depress calcium channel blocker binding to bovine cardiac sarcolemma. 1991

B Drenger, and M Quigg, and T J Blanck
Department of Anesthesiology, Johns Hopkins Hospital, Baltimore, Maryland.

Volatile anesthetics produce their negative inotropic effect on the heart mainly by interference with calcium homeostasis in the myocardial cell. In order to elucidate the mechanism of the depression, we have evaluated the effect of the volatile anesthetics on the binding of the calcium channel blocker [3H]nitrendipine to purified bovine cardiac sarcolemma. The radioligand binding studies were carried out at 25 degrees C, with increasing concentrations of [3H]nitrendipine (0.01-1 nM), in the presence or absence of unlabeled nitrendipine to determine specific binding, and with or without 1.9% halothane, 2.3% isoflurane, and 4.8% enflurane. Separately, [3H]nitrendipine was measured in the presence of increasing doses of halothane (0.78, 1.33, 1.90, and 2.57%). Kinetic studies of association and dissociation rate were performed with 1.90% halothane and 1 nM [3H]nitrendipine at different time intervals. All three volatile anesthetics produced depression of [3H]nitrendipine binding to the isolated cardiac sarcolemma. Only halothane produced a significant depression in binding, ranging between 59 and 66% (P less than 0.05), depending on the concentration of [3H]nitrendipine used. Isoflurane produced 29-38% depression, and enflurane produced 5-22% depression. Halothane also produced a significant (P less than 0.01) dose-dependent decrease in [3H]nitrendipine-specific binding. The kinetic binding experiments demonstrated that the time course for halothane's effect on association and dissociation of [3H]nitrendipine was 5 min for the half-maximum effect; the maximal reduction in binding capacity was at 15-30 min (P less than 0.05). Scatchard analysis revealed that all three volatile anesthetics produced reduction in the maximal number of binding sites; however, they varied in their effect on binding affinity. Only halothane produced a homogenous increase in the dissociation constant, signifying reduced affinity of the Ca2+ blocker to the channel. We suggest that the volatile anesthetics produce conformational changes in these channels consistent with their ability to depress channel-mediated Ca2+ influx into myocytes.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009568 Nitrendipine A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. Balminil,Bay e 5009,Bayotensin,Baypresol,Baypress,Gericin,Jutapress,Nidrel,Niprina,Nitre AbZ,Nitre-Puren,Nitregamma,Nitren 1A Pharma,Nitren Lich,Nitren acis,Nitrend KSK,Nitrendepat,Nitrendi Biochemie,Nitrendidoc,Nitrendimerck,Nitrendipin AL,Nitrendipin Apogepha,Nitrendipin Atid,Nitrendipin Basics,Nitrendipin Heumann,Nitrendipin Jenapharm,Nitrendipin Lindo,Nitrendipin Stada,Nitrendipin beta,Nitrendipin-ratiopharm,Nitrendipino Bayvit,Nitrendipino Ratiopharm,Nitrensal,Nitrepress,Tensogradal,Trendinol,Vastensium,nitrendipin von ct,nitrendipin-corax,Nitre Puren,NitrePuren,Nitrendipin ratiopharm,Nitrendipinratiopharm,nitrendipin corax,nitrendipincorax
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004737 Enflurane An extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. Alyrane,Enfran,Enlirane,Ethrane,Etran
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic

Related Publications

B Drenger, and M Quigg, and T J Blanck
February 1983, Journal of molecular and cellular cardiology,
B Drenger, and M Quigg, and T J Blanck
January 1975, Recent advances in studies on cardiac structure and metabolism,
B Drenger, and M Quigg, and T J Blanck
January 1990, Molecular pharmacology,
B Drenger, and M Quigg, and T J Blanck
July 1996, Anesthesiology,
B Drenger, and M Quigg, and T J Blanck
May 1979, Canadian journal of physiology and pharmacology,
B Drenger, and M Quigg, and T J Blanck
February 1985, The Journal of pharmacology and experimental therapeutics,
B Drenger, and M Quigg, and T J Blanck
August 1987, FEBS letters,
B Drenger, and M Quigg, and T J Blanck
October 1996, Anesthesiology,
B Drenger, and M Quigg, and T J Blanck
March 1979, Biochemical and biophysical research communications,
B Drenger, and M Quigg, and T J Blanck
July 1982, European journal of pharmacology,
Copied contents to your clipboard!