Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen. 1991

M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
Department of Periodontics, University of Alabama, Birmingham 35294.

Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains (M. S. Lantz, R. D. Allen, P. Bounelis, L. M. Switalski, and M. Hook, J. Bacteriol. 172:716-726, 1990). We now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37 degrees C. A functional fibrinogen-binding component (Mr, 150,000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with 125I-fibrinogen. Fibrinogen degradation did not occur at 4 degrees C but did occur at 22 and 37 degrees C. When bacteria and iodinated fibrinogen were incubated at 37 degrees C, two major fibrinogen fragments (Mr, 97,000 and 50,000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (Mr, 120,000 and 150,000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the Mr-120,000 and -150,000 proteases was enhanced by reducing agents, completely inhibited by N-alpha-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001439 Bacteroides A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
December 1986, Infection and immunity,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
August 2010, Microbiology (Reading, England),
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
September 1988, Oral microbiology and immunology,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
December 1989, Oral microbiology and immunology,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
January 1986, Josai Shika Daigaku kiyo. The Bulletin of the Josai Dental University,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
September 1990, Infection and immunity,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
February 1988, Journal of clinical periodontology,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
August 1984, Infection and immunity,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
March 1982, Journal of periodontal research,
M S Lantz, and R D Allen, and T A Vail, and L M Switalski, and M Hook
December 1988, Oral microbiology and immunology,
Copied contents to your clipboard!