Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. 1991

A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, Federal Republic of Germany.

Lipopolysaccharides (LPS) of four nonencapsulated strains of the human enteric pathogen Campylobacter jejuni were chemically characterized. When applied to two of the strains, extraction by a modified phenol-chloroform-petroleum ether method (H. Brade and C. Galanos, Eur. J. Biochem. 122:233-237, 1982) gave better yields of LPS than did extraction by the conventional hot phenol-water technique. Constituents common to all LPS were D-glucose, D-galactose, L-glycero-D-manno-heptose, 3-deoxy-D-manno-2-octulosonic acid, D-glucuronic acid, D-galactosamine, and phosphorylethanolamine. Phosphate was present in a relatively high amount. In addition, the LPS of three strains contained N-acetylneuraminic acid, whereas the LPS of the strain lacking this component contained 3-amino-3,6-dideoxy-D-glucose. The lipid A component contained phosphate with D-glucosamine and 2,3-diamino-2,3-dideoxy-D-glucose as the major amino sugars. Ethanolamine-phosphate was present also. The major fatty acids were ester- and amide-bound 3-hydroxytetradecanoic and ester-bound hexadecanoic acids, with a minor amount of ester-bound tetradecanoic acid. This is the first report of N-acetylneuraminic acid in the oligosaccharide moiety and diaminoglucose in the lipid A of C. jejuni LPS.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D004590 Electrophoresis, Paper Electrophoresis in which paper is used as the diffusion medium. This technique is confined almost entirely to separations of small molecules such as amino acids, peptides, and nucleotides, and relatively high voltages are nearly always used. Paper Electrophoresis
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids

Related Publications

A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
October 1976, Carbohydrate research,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
April 1967, The Journal of organic chemistry,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
October 2004, The Biochemical journal,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
December 1965, The Journal of organic chemistry,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
January 1989, Archives of microbiology,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
December 1978, Journal of general microbiology,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
September 2011, The Journal of organic chemistry,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
April 1982, The Japanese journal of experimental medicine,
A P Moran, and E T Rietschel, and T U Kosunen, and U Zähringer
January 1989, Analytical biochemistry,
Copied contents to your clipboard!