Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. 1991

D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
Department of Microbiology, University of Chicago, Illinois 60637.

The analysis of mutants of Escherichia coli that require elevated concentrations of K+ for growth has revealed two new genes, trkG, near minute 30 within the cryptic rac prophage, and trkH, near minute 87, the products of which affect constitutive K+ transport. The analysis of these and other trk mutations suggests that high rates of transport, previously considered to represent the activity of a single system, named TrkA, appear to be the sum of two systems, here named TrkG and TrkH. Each of these two is absolutely dependent on the product of the trkA gene, a cytoplasmic protein associated with the inner membrane (D. Bossemeyer, A. Borchard, D. C. Dosch, G. C. Helmer, W. Epstein, I. R. Booth, and E. P. Bakker, J. Biol. Chem. 264:16403-16410, 1989). The TrkH system is also dependent on the products of the trkH and trkE genes, while the TrkG system is also dependent on the product of the trkG gene and partially dependent on the product of the trkE gene. It is suggested that the trkH and trkG products are membrane proteins that form the transmembrane path for the K+ movement of the respective systems. Two mutations altering the trkA product reduce the affinity for K+ of both TrkG and TrkH, indicating that changes in peripheral protein can alter the conformation of the sites at which K+ is bound prior to transport. The TrkD system has a relatively modest rate of transport, is dependent solely on the product of the trkD gene, and is the sole saturable system for Cs+ uptake in this species (D. Bossemeyer, A. Schlösser, and E. P. Bakker, J. Bacteriol. 171:2219-2221, 1989).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
August 1974, Journal of bacteriology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
November 1971, Journal of bacteriology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
December 1990, Journal of bacteriology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
July 1967, The Journal of general physiology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
February 1979, FEBS letters,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
October 1985, Journal of bacteriology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
September 1979, Biochemistry,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
April 1977, Biochemical and biophysical research communications,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
February 1985, Journal of bacteriology,
D C Dosch, and G L Helmer, and S H Sutton, and F F Salvacion, and W Epstein
January 2001, Research in microbiology,
Copied contents to your clipboard!