Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. 2009

Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.

Targeted mRNA trafficking and local translation may play a significant role in controlling protein localization. Here we examined for the first time the localization of all ( approximately 50) mRNAs encoding peroxisomal proteins (mPPs) involved in peroxisome biogenesis and function. By using the bacteriophage MS2-CP RNA-binding protein (RBP) fused to multiple copies of GFP, we demonstrated that >40 endogenously expressed mPPs tagged with the MS2 aptamer form fluorescent RNA granules in vivo. The use of different RFP-tagged organellar markers revealed 3 basic patterns of mPP granule localization: to peroxisomes, to the endoplasmic reticulum (ER), and nonperoxisomal. Twelve mPPs (i.e., PEX1, PEX5, PEX8, PEX11-15, DCI1, NPY1, PCS60, and POX1) had a high percentage (52%-80%) of mRNA colocalization with peroxisomes. Thirteen mPPs (i.e., AAT2, PEX6, MDH3, PEX28, etc.) showed a low percentage (30%-42%) of colocalization, and 1 mPP (PEX3) preferentially localized to the ER. The mPPs of the nonperoxisomal pattern (i.e., GPD1, PCD1, PEX7) showed <<30% colocalization. mPP association with the peroxisome or ER was verified using cell fractionation and RT-PCR analysis. A model mPP, PEX14 mRNA, was found to be in close association with peroxisomes throughout the cell cycle, with its localization depending in part on the 3'-UTR, initiation of translation, and the Puf5 RBP. The different patterns of mPP localization observed suggest that multiple mechanisms involved in mRNA localization and translation may play roles in the importation of protein into peroxisomes.

UI MeSH Term Description Entries
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000074401 Peroxins Proteins that are essential for the assembly of PEROXISOMES. They recognize and transport cytoplasmic proteins that contain PEROXISOMAL TARGETING SIGNALS (PTS) to the peroxisome. Mutations in peroxin (PEX) genes are associated with several PEROXISOMAL DISORDERS. Peroxin,Peroxisome Biogenesis Factors,Biogenesis Factors, Peroxisome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D020675 Peroxisomes Microbodies which occur in animal and plant cells and in certain fungi and protozoa. They contain peroxidase, catalase, and allied enzymes. (From Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2nd ed) Peroxisome
D026901 Membrane Transport Proteins Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS. Biological Pump,Membrane Transport Protein,Membrane Transporter,Membrane Transporters,Metabolic Pump,Permease,Biological Pumps,Metabolic Pumps,Permeases,Pump, Biologic,Pump, Biological,Pump, Metabolic,Pumps, Biological,Pumps, Metabolic,Biologic Pump,Protein, Membrane Transport,Transport Protein, Membrane,Transport Proteins, Membrane,Transporter, Membrane,Transporters, Membrane

Related Publications

Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
August 2011, RNA (New York, N.Y.),
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
March 2009, The FEBS journal,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
September 2003, RNA (New York, N.Y.),
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
April 2003, FEMS microbiology reviews,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
October 1979, FEBS letters,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
January 2000, The EMBO journal,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
January 2000, Cell biochemistry and biophysics,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
January 1997, Advances in experimental medicine and biology,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
January 2001, The Journal of biological chemistry,
Gadi Zipor, and Liora Haim-Vilmovsky, and Rita Gelin-Licht, and Noga Gadir, and Cecile Brocard, and Jeffrey E Gerst
April 2009, Traffic (Copenhagen, Denmark),
Copied contents to your clipboard!