| D007694 |
Killer Cells, Natural |
Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. |
NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell |
|
| D003602 |
Cytotoxicity, Immunologic |
The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. |
Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic |
|
| D005434 |
Flow Cytometry |
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. |
Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell |
|
| D006720 |
Homozygote |
An individual in which both alleles at a given locus are identical. |
Homozygotes |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|
| D015236 |
HLA-C Antigens |
Class I human histocompatibility (HLA) antigens encoded by a small cluster of structural genes at the C locus on chromosome 6. They have significantly lower immunogenicity than the HLA-A and -B determinants and are therefore of minor importance in donor/recipient crossmatching. Their primary role is their high-risk association with certain disease manifestations (e.g., spondylarthritis, psoriasis, multiple myeloma). |
Antigens, HLA-C,HLA-C,Antigens, HLA C,HLA C Antigens |
|
| D051920 |
NK Cell Lectin-Like Receptor Subfamily D |
A subclass of NK cell lectin-like receptors that associates with a variety of members of NK CELL LECTIN-LIKE RECEPTOR SUBFAMILY C to form heterodimeric receptors for HLA-E antigen. |
Antigens, CD94,CD94 Antigens,Antigen CD94,CD94 Antigen,Killer Cell Lectin-Like Receptor Subfamily D, Member 1,NK Cell Lectin-Like Receptor Subfamily D, Member 1,Antigen, CD94,CD94, Antigen,Killer Cell Lectin Like Receptor Subfamily D, Member 1,NK Cell Lectin Like Receptor Subfamily D,NK Cell Lectin Like Receptor Subfamily D, Member 1 |
|
| D054340 |
Receptors, KIR |
A family of receptors found on NK CELLS that have specificity for a variety of HLA ANTIGENS. KIR receptors contain up to three different extracellular immunoglobulin-like domains referred to as D0, D1, and D2 and play an important role in blocking NK cell activation against cells expressing the appropriate HLA antigens thus preventing cell lysis. Although they are often referred to as being inhibitory receptors, a subset of KIR receptors may also play an activating role in NK cells. |
KIR Family Receptors,KIR Receptors,Killer Inhibitory Receptors,KIR Receptor,Killer Cell Immunoglobulin-Like Receptor,Killer Cell Immunoglobulin-Like Receptors,Killer Immunoglobulin-Like Receptor,Killer Immunoglobulin-Like Receptor (KIR) Family of Receptors,Killer Inhibitory Receptor,Receptor, Killer Inhibitory,Receptor, p58 NK Cell,p58 NK Cell Inhibitory Receptor,p58 NK Cell Receptor,p58 NK Cell Receptors,p58 Natural Killer Cell Receptor,Family Receptors, KIR,Immunoglobulin-Like Receptor, Killer,Inhibitory Receptor, Killer,Inhibitory Receptors, Killer,Killer Cell Immunoglobulin Like Receptor,Killer Cell Immunoglobulin Like Receptors,Killer Immunoglobulin Like Receptor,Receptor, KIR,Receptor, Killer Immunoglobulin-Like,Receptors, KIR Family,Receptors, Killer Inhibitory |
|
| D054344 |
Receptors, KIR2DL3 |
A KIR receptor that has specificity for HLA-C ANTIGEN. It is an inhibitory receptor that contains D1 and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail. It is similar in structure and function to the KIR2DL2 RECEPTORS and the KIR2DL3 RECEPTORS. |
Antigens, CD158b,CD158b Antigens,CD158b Antigen,Killer Cell Immunoglobulin-Like Receptor 2DL3,Natural Killer-Associated Transcript 2,Antigen, CD158b,KIR2DL3 Receptors,Killer Cell Immunoglobulin Like Receptor 2DL3,Natural Killer Associated Transcript 2 |
|