Individual calcium syntillas do not trigger spontaneous exocytosis from nerve terminals of the neurohypophysis. 2009

James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01665, USA.

Recently, highly localized Ca(2+) release events, similar to Ca(2+) sparks in muscle, have been observed in neuronal preparations. Specifically, in murine neurohypophysial terminals (NHT), these events, termed Ca(2+) syntillas, emanate from a ryanodine-sensitive intracellular Ca(2+) pool and increase in frequency with depolarization in the absence of Ca(2+) influx. Despite such knowledge of the nature of these Ca(2+) release events, their physiological role in this system has yet to be defined. Such localized Ca(2+) release events, if they occur in the precise location of the final exocytotic event(s), may directly trigger exocytosis. However, directly addressing this hypothesis has not been possible, since no method capable of visualizing individual release events in these CNS terminals has been available. Here, we have adapted an amperometric method for studying vesicle fusion to this system which relies on loading the secretory granules with the false transmitter dopamine, thus allowing, for the first time, the recording of individual exocytotic events from peptidergic NHT. Simultaneous use of this technique along with high-speed Ca(2+) imaging has enabled us to establish that spontaneous neuropeptide release and Ca(2+) syntillas do not display any observable temporal or spatial correlation, confirming similar findings in chromaffin cells. Although these results indicate that syntillas do not play a direct role in eliciting spontaneous release, they do not rule out indirect modulatory effects of syntillas on secretion.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D019439 Chromaffin Cells Cells that store epinephrine secretory vesicles. During times of stress, the nervous system signals the vesicles to secrete their hormonal content. Their name derives from their ability to stain a brownish color with chromic salts. Characteristically, they are located in the adrenal medulla and paraganglia (PARAGANGLIA, CHROMAFFIN) of the sympathetic nervous system. Cell, Chromaffin,Cells, Chromaffin,Chromaffin Cell

Related Publications

James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
January 1991, Annals of the New York Academy of Sciences,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
April 1985, The Journal of general physiology,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
January 1994, Advances in second messenger and phosphoprotein research,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
October 2009, The Journal of general physiology,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
March 1992, Brain research,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
February 1991, The Journal of physiology,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
March 1990, Nature,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
May 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
March 1980, Nature,
James M McNally, and Valérie De Crescenzo, and Kevin E Fogarty, and John V Walsh, and José R Lemos
January 2007, The Journal of physiology,
Copied contents to your clipboard!