Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. 1991

M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.

Two mutant forms of calmodulin were examined by small-angle X-ray scattering in solution and compared with the wild-type protein. Each mutant has deletions in the linker region of the central helix: one lacks residues Glu-83 and Glu-84 (Des2) and the other lacks residues Ser-81 through Glu-84 (Des4). The deletions change both the radii of gyration and the maximum dimensions of the molecules. In the presence of Ca2+, the observed radii of gyration are 22.4 A for wild-type bacterially expressed calmodulin, 19.5 A for Des2 calmodulin, and 20.3 A for Des4 calmodulin. A reduction in the radius of gyration by 1-2 A on removal of calcium, previously observed in the native protein, was also found in the wild type and the Des4 mutant; however, no significant size change was observed in the Des2 mutant. The large calcium-dependent conformational change in calmodulin induced by the binding of melittin [Kataoka, M., Head, J.F., Seaton, B.A., & Engelman, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6944-6948] was observed in all the bacterially expressed proteins. Each protein appears to undergo a transition from a dumbbell shape to a more globular conformation on binding melittin in the presence of calcium, although quantitatively the changes in the wild-type and Des4 proteins greatly exceed those in Des2. Modeling shows the central linker region of the molecule. Thus, the structure of the linker region is stable enough to maintain the average orientation and separation of the lobes yet flexible enough to permit the lobes to approach each other upon binding a peptide.

UI MeSH Term Description Entries
D008555 Melitten Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes. Melittin,Mellitin
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer

Related Publications

M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
February 1966, Journal of molecular biology,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
May 1972, Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
October 2005, Journal of molecular biology,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
February 2023, Current opinion in chemical biology,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
June 2001, Chemical reviews,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
January 1991, Journal of cell science. Supplement,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
April 2022, The journal of physical chemistry letters,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
February 1985, European journal of biochemistry,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
January 1971, Journal of agricultural and food chemistry,
M Kataoka, and J F Head, and A Persechini, and R H Kretsinger, and D M Engelman
December 2007, Biochemistry,
Copied contents to your clipboard!