Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. 1991

J D Down, and N J Tarbell, and H D Thames, and P M Mauch
Department of Radiobiology, State University of Groningen, The Netherlands.

Murine bone marrow chimera models were used to assess the efficacy of host total body irradiation (TBI) given at different doses, dose rates, and fractionation schemes in providing for engraftment of syngeneic and allogeneic bone marrow. B6-Hbbd congenic and LP mice, respectively, were used as donors (10(7) bone marrow cells) for syngeneic and allogenic (H-2 compatible) transplantation in standard B6 recipients. Stable marrow chimerism was determined from host and donor stem cell-derived hemoglobin phenotypes (Hbbs and Hbbd) on gel electrophoresis at 3 months posttransplant. Partial engraftment of syngeneic marrow was seen at single doses as low as 2 Gy, with the donor component increasing steadily with increasing TBI dose to a level of 100% at 7 Gy. Immunologic resistance of the host appeared to prevent allogeneic engraftment until 5.5 Gy. A very steep radiation dose response was then observed so that the level of chimerism with 6 Gy and above became comparable with syngeneic engraftment. Low dose rate (5 cGy minute-1) and fractionated TBI required higher total doses for equivalent engraftment (radiation dose-sparing) in both syngeneic and allogenic bone marrow transplantation. This displacement in the dose-response curve on fractionation was seen with interfraction intervals of 3 and 6 hours. A further dose-sparing effect was observed on extending the interval to 18 and 24 hours, but only for allogeneic transplantation, and may therefore be related to recovery of immune-mediated graft resistance. The involvement of multiple target cell populations in determining allogenic engraftment rendered the application of the linear-quadratic model for radiation cell survival problematic in this case. The recovery in dose when low dose rate and 6-hour interfraction intervals were applied in either syngeneic or allogeneic BMT is consistent with appreciable sub-lethal damage repair in the primitive self-renewing stem cell population of the host marrow. These results contrast with the poor repair capacity of the 11-day spleen colony-forming units (CFUs) population after fractionated irradiation and support the notion that ablation of early stem cells in the pre-CFUs compartment is essential for long-term marrow engraftment.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D014185 Transplantation, Isogeneic Transplantation between genetically identical individuals, i.e., members of the same species with identical histocompatibility antigens, such as monozygotic twins, members of the same inbred strain, or members of a hybrid population produced by crossing certain inbred strains. Transplantation, Syngeneic,Isogeneic Transplantation,Isograft Transplantation,Isografting,Syngeneic Transplantation,Transplantation, Isograft

Related Publications

J D Down, and N J Tarbell, and H D Thames, and P M Mauch
December 1993, International journal of radiation biology,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
August 1993, Seminars in oncology,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
April 1987, Bone marrow transplantation,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
July 1983, International journal of radiation oncology, biology, physics,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
March 2001, International journal of radiation oncology, biology, physics,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
January 1991, Radiation medicine,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
April 2004, The Tohoku journal of experimental medicine,
J D Down, and N J Tarbell, and H D Thames, and P M Mauch
April 1987, Transplantation,
Copied contents to your clipboard!