Glutamate uptake shapes low-[Mg2+] induced epileptiform activity in juvenile rat hippocampal slices. 2010

Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest, Hungary. nyitraig@chemres.hu

A wide range of data support a role for ambient glutamate (Glu) in epilepsy, although temporal patterns associated with the cellular uptake of Glu have not been addressed in detail. We report on the effects of Glu uptake inhibitors on recurrent seizure-like events (SLEs) evoked by low-[Mg(2+)] condition in juvenile rat hippocampal slices. Effects were compared for inhibitors such as L-trans-pyrrolidine-2,4-dicarboxylate (tPDC), DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainic acid (DHK), representing different transporter specificity and transportability profiles. Latency to the first SLE after drug application was shortened by the inhibitors (in % of control: 500 microM tPDC: 54+/-7, 15 microM DL-TBOA: 74+/-5, 50 microM dl-TBOA: 70+/-6, 100 microM DHK: 69+/-4, 300 microM DHK: 71+/-7). Further SLEs were frequently aborted by higher inhibitor concentrations applied (500 microM tPDC: 2/6, 50 microM TBOA: 5/5, 100 microM DHK: 6/8, 300 microM DHK: 3/3). Simultaneous field potential and whole-cell voltage recordings showed depolarization-induced inactivation of CA3 pyramidal neurons during inhibitor application. In the presence of inhibitors, the amplitude of forthcoming SLE was also decreased (in % of control: 500 microM tPDC: 66+/-9, 15 microM dl-TBOA: 88+/-5, 50 microM dl-TBOA: 59+/-6, 100 microM DHK: 67+/-4, 300 microM DHK: 68+/-1). Dependent on type and concentration of the inhibitor, the duration of the first SLE of drug application either increased (100 microM DHK: 375+/-90 %; 100 microM tPDC: 137+/-13 %) or decreased (50 microM TBOA: 62+/-13 %; 300 microM DHK: 60+/-15 %) reflecting differences in subtype-specificity or mechanism of action of the inhibitors. Our findings suggest a role for ambient Glu in the genesis and maintenance of recurrent epileptiform discharges.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008275 Magnesium Deficiency A nutritional condition produced by a deficiency of magnesium in the diet, characterized by anorexia, nausea, vomiting, lethargy, and weakness. Symptoms are paresthesias, muscle cramps, irritability, decreased attention span, and mental confusion, possibly requiring months to appear. Deficiency of body magnesium can exist even when serum values are normal. In addition, magnesium deficiency may be organ-selective, since certain tissues become deficient before others. (Harrison's Principles of Internal Medicine, 12th ed, p1936) Deficiency, Magnesium,Deficiencies, Magnesium,Magnesium Deficiencies
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D003998 Dicarboxylic Acids Acyclic acids that contain two carboxyl groups and have the formula HO2C-R-CO2H, where R may be an aromatic or aliphatic group. Acids, Dicarboxylic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
January 1999, Brain research,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
June 2019, Journal of neural engineering,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
October 2002, Neurobiology of disease,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
July 1995, Brain research. Developmental brain research,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
January 1992, Epilepsy research. Supplement,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
December 2020, Brain research bulletin,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
February 1996, Neuroscience letters,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
November 2020, Epilepsy research,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
January 1991, Experimental brain research,
Gabriella Nyitrai, and Bálint Lasztóczi, and Julianna Kardos
August 1989, Brain research. Developmental brain research,
Copied contents to your clipboard!