Stopped-flow fluorescence kinetic studies of Glu-plasminogen. Conformational changes triggered by AH-site ligand binding. 1991

U Christensen, and L Mølgaard
Chemical Laboratory IV, University of Copenhagen, Denmark.

Binding of 6-aminohexanoic acid to the AH-site, a weak lysine binding site in Glu-plasminogen, alters the conformation of the molecule. The kinetics of the binding and the accompanying conformational change are investigated at pH 7.8, 25 degrees C. Changes of intrinsic protein fluorescence were measured as a function of time after rapid mixing in a stopped-flow apparatus. The results reflect a two-step reaction mechanism: Rapid association of Glu-plasminogen and 6-aminohexanoic acid (K1 = 44 mM) followed by the conformational change (k2 = 69 s-1 and k-2 = 3 s-1) with an overall dissociation constant Kd = 2.0 mM. Thus the conformational change is rather fast, t12 = 0.01 s. Its importance for the rates of Glu-plasminogen activation reactions is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D015119 Aminocaproic Acid An antifibrinolytic agent that acts by inhibiting plasminogen activators which have fibrinolytic properties. 6-Aminocaproic Acid,6-Aminohexanoic Acid,epsilon-Aminocaproic Acid,Amicar,CY-116,Capralense,Capramol,Caproamin,Caprocid,Caprolest,Epsamon,Epsikapron,Hemocaprol,Hexalense,6 Aminocaproic Acid,6 Aminohexanoic Acid,CY 116,CY116,epsilon Aminocaproic Acid
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

U Christensen, and L Mølgaard
May 1975, Biochemistry,
U Christensen, and L Mølgaard
September 1970, Biochemical and biophysical research communications,
U Christensen, and L Mølgaard
August 1975, The Biochemical journal,
Copied contents to your clipboard!