Inhibition of recovery from potentially lethal radiation damage in A549 cells by the K+/H+ ionophore nigericin. 1991

M E Varnes, and H J Menegay, and D S McKenna
Department of Radiology, Case Western Reserve University, Cleveland, OH 44106.

A549 cells held for 4 hr in Hank's balanced salt solution, after 10 Gy irradiation, exhibit potentially lethal damage recovery (PLDR) which is dependent on extracellular pH (pHe). Recovery factors of 2.2 to 3.5 are observed when pHe is 6.40 to 7.30, but recovery factors of less than 1.0 are found when pHe is reduced to 6.20 or 6.00. The K+/H+ ionophore nigericin, when added to cells post-irradiation, inhibits PLDR in a pHe-dependent manner; it is increasingly more effective as pHe is reduced from 6.80 to 6.40. The presence of nigericin thus causes inhibition of PLDR at pHe's that normally promote recovery. The drug does not affect radiation response of A549 cells when present only during irradiation. Effects of low pHe buffer, with and without nigericin, on intracellular pH (pHi) and on ATP levels were examined in an effort to elucidate the mechanisms for inhibition of PLDR and enhancement of radiation response. Incubation of cells in pHe 6.00 buffer results in a slight decrease in pHi and does not induce a drop in ATP levels. In contrast, post-irradiation incubation of cells in pHe 6.40 buffer containing 2 microM nigericin causes an immediate and dramatic decrease in pHi, and a gradual loss of ATP to 30% of control levels by 4 hr. The data obtained so far suggest that a very slight lowering of pHi may influence post-irradiation holding recovery, and that the mechanisms by which pHe 6.00 buffer alone, or pHe 6.40 buffer containing nigericin, affect holding recovery are different.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D009550 Nigericin A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. (From Merck Index, 11th ed) Epinigericin,Pandavir
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M E Varnes, and H J Menegay, and D S McKenna
November 1984, British journal of cancer,
M E Varnes, and H J Menegay, and D S McKenna
October 1986, Radiation research,
M E Varnes, and H J Menegay, and D S McKenna
May 1998, Journal of food protection,
M E Varnes, and H J Menegay, and D S McKenna
December 1977, Journal of the National Cancer Institute,
M E Varnes, and H J Menegay, and D S McKenna
December 1976, Cancer treatment reports,
M E Varnes, and H J Menegay, and D S McKenna
January 1985, Radiation and environmental biophysics,
M E Varnes, and H J Menegay, and D S McKenna
August 1969, Science (New York, N.Y.),
M E Varnes, and H J Menegay, and D S McKenna
January 1990, Radiation research,
Copied contents to your clipboard!