Synthesis and biological activity of the 2-desamino and 2-desamino-2-methyl analogues of aminopterin and methotrexate. 1991

A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
Dana-Farber Cancer Institute, Boston, Massachusetts.

The previously undescribed 2-desamino and 2-desamino-2-methyl analogues of aminopterin (AMT) and methotrexate (MTX) were synthesized from 2-amino-5-(chloromethyl)pyrazine-3-carbonitrile. The AMT analogues were obtained via a three-step sequence consisting of condensation with di-tert-butyl N-(4-aminobenzoyl)-L-glutamate, heating with formamidine or acetamidine acetate, and mild acidolysis with trifluoroacetic acid. The MTX analogues were prepared similarly, except that 2-amino-5-(chloromethyl)pyrazine-3-carbonitrile was condensed with 4-(N-methylamino)benzoic acid and the resulting product was annulated with formamidine or acetamidine acetate to obtain the 2-desamino and 2-desamino-2-methyl analogues, respectively, of 4-amino-4-deoxy-N10-methylpteroic acid. Condensation with di-tert-butyl L-glutamate in the presence of diethyl phosphorocyanidate followed by ester cleavage with trifluoroacetic acid was then carried out. Retention of the L configuration in the glutamate moiety during this synthesis was demonstrated by rapid and essentially complete hydrolysis with carboxypeptidase G1 under conditions that likewise cleaved the L enantiomer of MTX but left the D enantiomer unaffected. The 2-desamino and 2-desamino-2-methyl analogues of AMT and MTX inhibited the growth of tumor cells, but were very poor inhibitors of dihydrofolate reductase (DHFR). These unexpected results suggested that activity in intact cells was due to metabolism of the 2-desamino compounds to polyglutamates.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000630 Aminopterin A folic acid derivative used as a rodenticide that has been shown to be teratogenic. Aminopterin Sodium,Aminopterin, Disodium Salt,Disodium Salt Aminopterin,Sodium, Aminopterin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
September 1986, Journal of medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
June 1989, Journal of medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
January 1988, Progress in medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
January 1993, Advances in experimental medicine and biology,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
June 1986, Journal of medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
July 1988, Journal of medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
May 1986, Journal of medicinal chemistry,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
August 1998, Bioorganic & medicinal chemistry letters,
A Rosowsky, and R A Forsch, and R G Moran, and J H Freisheim
January 2013, Chemicke zvesti,
Copied contents to your clipboard!