DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response. 2009

Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.

DDB2 was identified as a protein involved in the Nucleotide Excision Repair (NER), a major DNA repair mechanism that repairs UV damage to prevent accumulation of mutations and tumorigenesis. However, recent studies indicated additional functions of DDB2 in the DNA damage response pathway. Herein, we discuss the proposed mechanisms by which DDB2 activates NER and programmed cell death upon DNA damage through its E3 ligase activity.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic
D050759 Cyclin-Dependent Kinase Inhibitor p21 A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3. CDK2-Associated Protein 20 kDa,CDKN1 Protein,CDKN1A Protein,Cdk-Interacting Protein 1,Cdk2 Inhibitor Protein,Cell Cycle Regulator p21,Cyclin Kinase Inhibitor p21,Cyclin-Dependent Kinase Inhibitor 1A Protein,Senescent Cell-Derived Inhibitor Protein 1,p21 Cell Cycle Regulator,p21 Cyclin Kinase Inhibitor,CDK2 Associated Protein 20 kDa,Cdk Interacting Protein 1,Cyclin Dependent Kinase Inhibitor 1A Protein,Cyclin Dependent Kinase Inhibitor p21,Senescent Cell Derived Inhibitor Protein 1

Related Publications

Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
June 2014, The Journal of biological chemistry,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
September 2006, Cancer research,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
January 2002, Cancer biology & therapy,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
September 2020, Nature communications,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
August 2013, Biochemical and biophysical research communications,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
January 1979, Cold Spring Harbor symposia on quantitative biology,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
June 2013, Antioxidants & redox signaling,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
February 2012, Current opinion in structural biology,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
April 2010, Journal of biomedical science,
Tanya Stoyanova, and Nilotpal Roy, and Dragana Kopanja, and Pradip Raychaudhuri, and Srilata Bagchi
November 2002, Chang Gung medical journal,
Copied contents to your clipboard!