Guanosine 5'-[beta-thio]triphosphate selectively activates calcium signaling in mast cells. 1991

F von zur Mühlen, and F Eckstein, and R Penner
Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, Federal Republic of Germany.

In rat peritoneal mast cells, the activation of GTP-binding proteins (G proteins) by guanosine 5'-[gamma-thio]triphosphate GTP[gamma S] has been found to induce a transient rise in intracellular calcium as well as degranulation. A G protein that couples to phospholipase C (Gp) is thought to mediate the calcium response, whereas degranulation is mediated by a different G protein, termed Ge. In an attempt to activate mast-cell G proteins more selectively, the GTP analogues guanosine 5'-[alpha-thio]triphosphate (GTP[alpha S]) and guanosine 5'-[beta-thio]triphosphate (GTP[beta S]) (RP and SP diastereomers) were introduced into mast cells by means of patch pipettes. Degranulation and free intracellular calcium were monitored by cell capacitance and fura-2 measurements, respectively. It was found that RP-GTP[alpha S], like GTP[gamma S], induced both calcium release and exocytosis. In contrast, RP-GTP[beta S] induced repetitive calcium spikes that were not regularly accompanied by exocytosis. These results suggest that RP-GTP[beta S] selectively activates calcium signaling in mast cells. The RP-GTP[beta S]-induced oscillations were independent of extracellular calcium. They were absent in the presence of heparin or high concentrations of inositol 1,4,5-trisphosphate and modulated by compound 48/80, suggesting the involvement of the inositol phospholipid signaling pathway. Latency of appearance and spiking frequency were markedly modulated by varying the intracellular ATP concentration. The differential activation of intracellular calcium signaling and exocytosis by GTP[beta S] confirms the presence of independent signal-transduction pathways for the two cell responses. RP-GTP[beta S] may prove helpful in the biochemical and molecular characterization of Gp, the as-yet-unidentified G protein that couples receptors to intracellular calcium release.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

F von zur Mühlen, and F Eckstein, and R Penner
June 1987, Biochemical and biophysical research communications,
F von zur Mühlen, and F Eckstein, and R Penner
November 1992, The Biochemical journal,
F von zur Mühlen, and F Eckstein, and R Penner
June 1990, Biochemical Society transactions,
F von zur Mühlen, and F Eckstein, and R Penner
January 1994, Methods in enzymology,
F von zur Mühlen, and F Eckstein, and R Penner
July 1999, Archives of biochemistry and biophysics,
F von zur Mühlen, and F Eckstein, and R Penner
March 1994, Current eye research,
F von zur Mühlen, and F Eckstein, and R Penner
September 1990, The Biochemical journal,
Copied contents to your clipboard!