Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate. 2009

Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA. nde.chantal@epa.gov

Pseudomonas aeruginosa is implicated in nosocomial infections and chronic respiratory infections in cystic fibrosis patients. Chlorhexidine diacetate (CHX) is a biguanide disinfectant used for bacterial control in the hospital and agricultural and domestic environments. A better understanding of the mechanism of action of CHX and the resulting response elicited by P. aeruginosa to CHX will facilitate its effective utilization for P. aeruginosa control in these environments. This study presents, for the first time, the transcriptomic response of P. aeruginosa to 0.008 mM CHX after 10 and 60 min. Our results reveal that, after both treatment times, membrane transport, oxidative phosphorylation, and electron transport genes were downregulated. After 10 min, DNA repair was downregulated and the oprH gene that blocks the self-promoted uptake of antimicrobials was upregulated. After 60 min, outer membrane protein, flagellum, pilus, oxidative phosphorylation, and electron transport genes were downregulated. The mexC and mexD genes of the MexCD-OprJ multidrug efflux pump were significantly upregulated after both treatment times. The results of this study improve our understanding of the mode of action of CHX on P. aeruginosa and provide insights into the mechanism of action of other biguanide disinfectants which can be used for the development of more efficient disinfectants.

UI MeSH Term Description Entries
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002710 Chlorhexidine A disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque. Chlorhexidine Acetate,Chlorhexidine Hydrochloride,MK-412A,Novalsan,Sebidin A,Tubulicid,Acetate, Chlorhexidine,Hydrochloride, Chlorhexidine,MK 412A,MK412A
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
January 2005, Journal of applied microbiology,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
December 2000, The Journal of hospital infection,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
August 1989, FEMS microbiology letters,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
January 1979, Mikrobiologicheskii zhurnal,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
January 2020, Frontiers in microbiology,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
January 2016, Scientific reports,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
October 2007, Journal of bacteriology,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
November 2000, International journal of antimicrobial agents,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
October 2021, Data in brief,
Chantal W Nde, and Hyeung-Jin Jang, and Freshteh Toghrol, and William E Bentley
November 2021, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
Copied contents to your clipboard!