Intracellular calcium signalling in Alzheimer's disease. 2010

Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
University of Tübingen, Institute of Physiology II, Tübingen, Germany.

More than two decades ago, dysregulation of the intracellular Ca(2+) homeostasis was suggested to underlie the development of Alzheimer's disease (AD). This hypothesis was tested in numerous in vitro studies, which revealed multiple Ca(2+) signalling pathways able to contribute to AD pathology. It remained, however, unclear whether these pathways are also activated in vivo, in cells involved in signal processing in the living brain. Here we review recent data analysing intracellular Ca(2+) signalling in vivo in the context of previous in vitro findings. We particularly focus on the processes taking place in the immediate vicinity of amyloid plaques and on their possible role for AD-mediated brain dysfunction.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016229 Amyloid beta-Peptides Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue. Alzheimer beta-Protein,Amyloid Protein A4,Amyloid beta-Peptide,Amyloid beta-Protein,beta Amyloid,beta-Amyloid Protein,Alzheimer's ABP,Alzheimer's Amyloid Fibril Protein,Amyloid AD-AP,Amyloid Fibril Protein, Alzheimer's,Amyloid beta-Proteins,ABP, Alzheimer's,AD-AP, Amyloid,Alzheimer ABP,Alzheimer beta Protein,Alzheimers ABP,Amyloid AD AP,Amyloid beta Peptide,Amyloid beta Peptides,Amyloid beta Protein,Amyloid beta Proteins,Amyloid, beta,Protein A4, Amyloid,Protein, beta-Amyloid,beta Amyloid Protein,beta-Peptide, Amyloid,beta-Peptides, Amyloid,beta-Protein, Alzheimer,beta-Protein, Amyloid,beta-Proteins, Amyloid
D016874 Neurofibrillary Tangles Abnormal structures located in various parts of the brain and composed of dense arrays of paired helical filaments (neurofilaments and microtubules). These double helical stacks of transverse subunits are twisted into left-handed ribbon-like filaments that likely incorporate the following proteins: (1) the intermediate filaments: medium- and high-molecular-weight neurofilaments; (2) the microtubule-associated proteins map-2 and tau; (3) actin; and (4) UBIQUITINS. As one of the hallmarks of ALZHEIMER DISEASE, the neurofibrillary tangles eventually occupy the whole of the cytoplasm in certain classes of cell in the neocortex, hippocampus, brain stem, and diencephalon. The number of these tangles, as seen in post mortem histology, correlates with the degree of dementia during life. Some studies suggest that tangle antigens leak into the systemic circulation both in the course of normal aging and in cases of Alzheimer disease. Neurofibrillary Tangle,Tangle, Neurofibrillary,Tangles, Neurofibrillary
D053763 Presenilins Integral membrane proteins and essential components of the gamma-secretase complex that catalyzes the cleavage of membrane proteins such as NOTCH RECEPTORS and AMYLOID BETA-PEPTIDES precursors. Mutations of presenilins lead to presenile ALZHEIMER DISEASE with onset before age 65 years. Presenilin
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium

Related Publications

Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
November 2002, Nature reviews. Neuroscience,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
July 2011, Neurochemical research,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
January 2014, Reviews of physiology, biochemistry and pharmacology,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
February 2017, Biochemical and biophysical research communications,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
January 2016, BioMed research international,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
June 1996, Annals of the New York Academy of Sciences,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
October 2018, Antioxidants & redox signaling,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
January 1997, Neurobiology of aging,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
March 2004, Cell calcium,
Marina Hermes, and Gerhard Eichhoff, and Olga Garaschuk
January 2021, Cells,
Copied contents to your clipboard!