Selective death of cholinergic neurons induced by beta-methylamino-L-alanine. 2010

Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.

Beta-N-methylamino-L-alanine (BMAA) is a nonprotein amino acid that may be involved in neurodegenerative diseases. It is produced by a large variety of cyanobacteria and is found at high levels in the brains of Alzheimer's disease and amyotrophic lateral sclerosis patients. Although BMAA is clearly a neurotoxin, previous studies using cortical cultures indicated that millimolar concentrations were required to cause toxicity. We tested the toxicity of BMAA in septal cultures containing cholinergic neurons and mesencephalic cultures containing dopaminergic neurons. We found that cholinergic, but not dopaminergic, neurons were selectively vulnerable to BMAA toxicity, with toxicity occurring at 30 microM. The toxicity of BMAA to total septal neurons involved activation of N-methyl D-aspartate receptors, whereas the death of cholinergic neurons was mediated by AMPA/kainate receptors.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000087522 Cyanobacteria Toxins Toxic secondary metabolites produced CYANOBACTERIA. Cyanobacterial Neurotoxin,Cyanobacterial Neurotoxins,Cyanobacterial Toxins,Cyanotoxins,Neurotoxin, Cyanobacterial
D000599 Amino Acids, Diamino Amino Acids, Dibasic,Diamino Amino Acids,Dibasic Amino Acids,Acids, Diamino Amino,Acids, Dibasic Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
May 2009, Journal of neurochemistry,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
January 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
March 1993, Pharmacology, biochemistry, and behavior,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
September 1989, Brain research,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
September 1990, Journal of neurochemistry,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
May 2007, Neurotoxicology,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
May 1991, Journal of neuroscience research,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
May 2007, Journal of the American Society for Mass Spectrometry,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
February 2007, Neurobiology of disease,
Xiao Qian Liu, and Travis Rush, and Jennifer Ciske, and Doug Lobner
October 1997, Journal of neurochemistry,
Copied contents to your clipboard!