Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei. 2010

S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
Department of Internal Medicine, Section of Human Physiology, University of Perugia, Perugia, Italy. sgrassi@unipg.it

We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves

Related Publications

S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
November 1998, Neuroscience,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
May 2008, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
November 2009, Clinical and experimental pharmacology & physiology,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
July 2011, Neuroscience,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
August 2001, Progress in neurobiology,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
January 2005, No to hattatsu = Brain and development,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
August 2003, Neuroreport,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
October 1996, Hearing research,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
August 2018, Pflugers Archiv : European journal of physiology,
S Grassi, and A Frondaroli, and M Scarduzio, and M B Dutia, and C Dieni, and V E Pettorossi
December 2001, Neuroreport,
Copied contents to your clipboard!