Microglia and central nervous system immunity. 2010

Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
Department of Neurological Surgery, University of California at San Francisco, 505 Parnassus Avenue, One Shrader Street, Suite 650, San Francisco, CA 94117, USA.

The central nervous system (CNS) has evolved as an immune-privileged site to protect its vital functions from damaging immune-mediated inflammation. There must be a CNS-adapted system of surveillance that continuously evaluates local changes in the nervous system and communicates to the peripheral immune system during an injury or a disease. Recent advances leading to a better understanding of the CNS disease processes has placed microglia, the CNS-based resident macrophages, at center stage in this system of active surveillance. Evidence points to microglia cells contributing to the immunosuppressive environment of gliomas and actually promoting tumor growth. Microglia accumulation exists in almost every CNS disease process, including CNS tumors. This article discusses the role of microglia in CNS immunity and highlights key advances made in glioma immunology.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias
D018450 Disease Progression The worsening and general progression of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis. Clinical Course,Clinical Progression,Disease Exacerbation,Exacerbation, Disease,Progression, Clinical,Progression, Disease
D018836 Inflammation Mediators The endogenous compounds that mediate inflammation (AUTACOIDS) and related exogenous compounds including the synthetic prostaglandins (PROSTAGLANDINS, SYNTHETIC). Mediators of Inflammation,Mediators, Inflammation

Related Publications

Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
January 2015, Frontiers in cellular neuroscience,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
December 2009, Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
January 1990, Lijecnicki vjesnik,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
January 2018, Cellular and molecular neurobiology,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
March 2009, Journal of leukocyte biology,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
May 1968, The Proceedings of the Institute of Medicine of Chicago,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
April 1969, Diseases of the nervous system,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
October 1980, Lijecnicki vjesnik,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
July 2015, Cold Spring Harbor perspectives in biology,
Gurvinder Kaur, and Seunggu J Han, and Isaac Yang, and Courtney Crane
January 2023, Nature,
Copied contents to your clipboard!