Viral-based gene delivery and regulated gene expression for targeted cancer therapy. 2010

Yi Lu, and Chikezie O Madu
University of Tennessee Health Science Center, Department of Pathology and Laboratory Medicine, Cancer Research Building, Room 218, 19 South Manassas Street, Memphis, TN 38163, USA. ylu@utmem.edu

BACKGROUND Cancer is both a major health concern and a care-cost issue in the US and the rest of the world. It is estimated that there will be a total of 1,479,350 new cancer cases and 562,340 cancer deaths in 2009 within the US alone. One of the major obstacles in cancer therapy is the ability to target specifically cancer cells. Most existing chemotherapies and other routine therapies (such as radiation therapy and hormonal manipulation) use indiscriminate approaches in which both cancer cells and non-cancerous surrounding cells are treated equally by the toxic treatment. As a result, either the cancer cell escapes the toxic dosage necessary for cell death and consequently resumes replication, or an adequate lethal dose that kills the cancer cell also causes the cancer patient to perish. Owing to this dilemma, cancer- or organ/tissue-specific targeting is greatly desired for effective cancer treatment and the reduction of side effect cytotoxicity within the patient. METHODS In this review, the strategies of targeted cancer therapy are discussed, with an emphasis on viral-based gene delivery and regulated gene expression. RESULTS Numerous approaches and updates in this field are presented for several common cancer types. CONCLUSIONS A summary of existing challenges and future directions is also included.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014780 Viruses Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells. Animal Viruses,Zoophaginae,Animal Virus,Virus,Virus, Animal,Viruses, Animal
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

Yi Lu, and Chikezie O Madu
November 1998, Frontiers in bioscience : a journal and virtual library,
Yi Lu, and Chikezie O Madu
April 2010, Nuclear medicine and molecular imaging,
Yi Lu, and Chikezie O Madu
January 1998, Cancer detection and prevention,
Yi Lu, and Chikezie O Madu
July 2009, Advanced drug delivery reviews,
Yi Lu, and Chikezie O Madu
December 2009, Clinical cancer research : an official journal of the American Association for Cancer Research,
Yi Lu, and Chikezie O Madu
January 2017, Current gene therapy,
Yi Lu, and Chikezie O Madu
November 2004, Expert opinion on biological therapy,
Yi Lu, and Chikezie O Madu
January 2012, Journal of controlled release : official journal of the Controlled Release Society,
Yi Lu, and Chikezie O Madu
July 2001, Current gene therapy,
Copied contents to your clipboard!