Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. 2010

S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
National Society for Epilepsy MRI Unit, Department of Clinical and Experimental Epilepsy UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.

BACKGROUND EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional << event-related >> designs based solely on the visual identification of IED. METHODS Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. RESULTS ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. CONCLUSIONS Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003936 Diagnosis, Computer-Assisted Application of computer programs designed to assist the physician in solving a diagnostic problem. Computer-Assisted Diagnosis,Computer Assisted Diagnosis,Computer-Assisted Diagnoses,Diagnoses, Computer-Assisted,Diagnosis, Computer Assisted
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004828 Epilepsies, Partial Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317) Abdominal Epilepsy,Digestive Epilepsy,Epilepsy, Focal,Epilepsy, Simple Partial,Focal Seizure Disorder,Gelastic Epilepsy,Partial Epilepsy,Partial Seizure Disorder,Seizure Disorder, Partial,Simple Partial Seizures,Amygdalo-Hippocampal Epilepsy,Benign Focal Epilepsy, Childhood,Benign Occipital Epilepsy,Benign Occipital Epilepsy, Childhood,Childhood Benign Focal Epilepsy,Childhood Benign Occipital Epilepsy,Epilepsy, Benign Occipital,Epilepsy, Localization-Related,Epilepsy, Partial,Occipital Lobe Epilepsy,Panayiotopoulos Syndrome,Partial Seizures, Simple, Consciousness Preserved,Rhinencephalic Epilepsy,Seizure Disorder, Focal,Subclinical Seizure,Uncinate Seizures,Abdominal Epilepsies,Amygdalo-Hippocampal Epilepsies,Benign Occipital Epilepsies,Digestive Epilepsies,Disorders, Focal Seizure,Disorders, Partial Seizure,Epilepsies, Abdominal,Epilepsies, Amygdalo-Hippocampal,Epilepsies, Benign Occipital,Epilepsies, Digestive,Epilepsies, Focal,Epilepsies, Gelastic,Epilepsies, Localization-Related,Epilepsies, Occipital Lobe,Epilepsies, Rhinencephalic,Epilepsies, Simple Partial,Epilepsy, Abdominal,Focal Epilepsies,Focal Epilepsy,Focal Seizure Disorders,Gelastic Epilepsies,Lobe Epilepsy, Occipital,Localization-Related Epilepsies,Localization-Related Epilepsy,Occipital Epilepsies, Benign,Occipital Epilepsy, Benign,Occipital Lobe Epilepsies,Partial Epilepsies,Partial Epilepsies, Simple,Partial Seizure Disorders,Partial Seizures, Simple,Rhinencephalic Epilepsies,Seizure Disorders, Focal,Seizure Disorders, Partial,Seizure, Subclinical,Seizure, Uncinate,Seizures, Simple Partial,Seizures, Subclinical,Seizures, Uncinate,Simple Partial Epilepsies,Subclinical Seizures,Uncinate Seizure

Related Publications

S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
September 2012, Epilepsia,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
March 2020, Journal of neurosurgery,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
January 2021, Brain communications,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
October 2008, Magnetic resonance imaging,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
April 2010, Magnetic resonance imaging,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
February 2007, Epilepsia,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
April 2016, World neurosurgery,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
October 2010, Magnetic resonance imaging,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
January 2016, PloS one,
S Vulliemoz, and R Rodionov, and D W Carmichael, and R Thornton, and M Guye, and S D Lhatoo, and C M Michel, and J S Duncan, and L Lemieux
July 2011, Human brain mapping,
Copied contents to your clipboard!