Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. 2010

Xiangmin Xu, and Keith D Roby, and Edward M Callaway
Systems Neurobiology Laboratories, the Salk Institute for Biological Studies, La Jolla, California 92037, USA.

The cerebral cortex has diverse types of inhibitory neurons. In rat cortex, past research has shown that parvalbumin (PV), somatostatin (SOM), calretinin (CR), and cholecystokinin (CCK) label four distinct chemical classes of GABAergic interneurons. However, in contrast to rat cortex, previous studies indicate that there is significant colocalization of SOM and CR in mouse cortical inhibitory neurons. In the present study we further characterized immunochemical distinctions among mouse inhibitory cortical neurons by double immunochemical labeling with chemical markers. We found that, PV, SOM, and vasointenstinal peptide (VIP) reliably identify three nonoverlapping distinct subpopulations, as there was no overlap of immunoreactivity between PV and all the other chemical markers tested, and SOM and VIP did not show any overlap in labeled neurons in all the cortical areas. In comparison, there was significant overlap in combinations of other chemical markers. With some laminar and regional variations, the average overlap of SOM/CR (percentage of SOM+ cells expressing CR) and SOM/neuropeptide tyrosine (NPY) across all examined layers and cortical regions was 21.6% and 7.1%, respectively. The average overlap of VIP/CR, VIP/NPY, and CR/NPY was 34.2%, 9.5%, and 10%, respectively. We quantified and assessed the percentages of marker-positive GABAergic cells, and showed that the nonoverlapping subpopulations (i.e., PV+, SOM+ and VIP+ cells) accounted for about 60% of the GABAergic cell population. Taken together, our data reveal important chemical distinctions between mouse inhibitory cortical neurons and indicate that PV, SOM, and VIP can differentially label a majority of mouse inhibitory cortical neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes

Related Publications

Xiangmin Xu, and Keith D Roby, and Edward M Callaway
January 2004, European journal of immunology,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
July 2021, Pain,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
January 1991, Synapse (New York, N.Y.),
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
March 1968, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
December 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
January 1975, Cold Spring Harbor symposia on quantitative biology,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
January 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
December 2003, Nature neuroscience,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
August 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiangmin Xu, and Keith D Roby, and Edward M Callaway
January 2019, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!