Multisensory interactions elicited by audiovisual stimuli presented peripherally in a visual attention task: a behavioral and event-related potential study in humans. 2009

Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
Division of Industrial Innovation Sciences, Graduate School of Natural Science and Technology, Okayama University, Japan. wu@mech.okayama-u.ac.jp

We applied behavioral and event-related potential measurements to study human multisensory interactions induced by audiovisual (AV) stimuli presented peripherally in a visual attention task in which an irrelevant auditory stimulus occasionally accompanied the visual stimulus. A stream of visual, auditory, and AV stimuli was randomly presented to the left or right side of the subjects; subjects covertly attended to the visual stimuli on either the left or right side and promptly responded to visual targets on that side. Behavioral results showed that responses to AV stimuli were faster and more accurate than those to visual stimuli only. Three event-related potential components related to AV interactions were identified: (1) over the right temporal area, approximately 200 to 220 milliseconds; (2) over the centromedial area, approximately 290 to 310 milliseconds; and (3) over the left and right ventral temporal area, approximately 290 to 310 milliseconds. We found that these interaction effects occurred slightly later than those reported in previously published AV interaction studies in which AV stimuli were presented centrally. Our results suggest that the retinotopic location of stimuli affects AV interactions occurring at later stages of cognitive processing in response to a visual attention task.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
July 2012, Neuroreport,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
July 2012, Brain topography,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
July 2010, Journal of cognitive neuroscience,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
February 2006, Neuroreport,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
February 2018, Experimental brain research,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
February 2001, Neuroreport,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
June 1992, Ear and hearing,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
January 1991, International journal of psychophysiology : official journal of the International Organization of Psychophysiology,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
February 2009, Experimental brain research,
Jinglong Wu, and Qi Li, and Ou Bai, and Tetsuo Touge
February 1999, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Copied contents to your clipboard!