Measures of reliability in the kinematics of maximal undulatory underwater swimming. 2010

Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
School of Life Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom. c.connaboy@napier.ac.uk

OBJECTIVE The purposes of this article were to establish the reliability of the kinematics of maximal undulatory underwater swimming (UUS) in skilled swimmers, to determine any requirement for familiarization trials, to establish the within-subject (WS) variability of the kinematics, and to calculate the number of cycles required to accurately represent UUS performance. METHODS Fifteen male swimmers performed 20 maximal UUS trials (two cycles per trial) during four sessions. The magnitude of any systematic bias present within the kinematic variables was calculated between session, trial, and cycle. Random error calculations were calculated to determine the WS variation. An iterative intraclass correlation coefficient (ICC) process was used to determine the number of cycles required to achieve a stable representation of each kinematic variable. RESULTS Significant differences were found between session 1 and all other sessions for several variables, indicating the requirement for a familiarization session. Results indicated a wide range of WS variation (coefficient of variation [CV] = 1.21%-12.42%). Reductions in WS variation were observed for all variables when the number of cycles of data used to calculate WS variation was increased. Using six cycles of data, including additional cycles of data, provided diminishing returns regarding the reduction of WS variation. The ICC analysis indicated that an average of nine cycles (mean ± SD = 9.47 ± 5.63) was required to achieve the maximum ICC values attained, and an average of four cycles (mean ± SD = 3.57 ± 2.09) was required to achieve an ICC of 0.95. CONCLUSIONS After determining the systematic bias and establishing the requirement for a familiarization session, six cycles of data were found to be sufficient to provide high levels of reliability (CV(TE) = 0.86-8.92; ICC = 0.811-0.996) for each of the UUS kinematic variables.

UI MeSH Term Description Entries
D007101 Immersion The placing of a body or a part thereof into a liquid. Submersion,Immersions,Submersions
D008297 Male Males
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D013550 Swimming An activity in which the body is propelled through water by specific movement of the arms and/or the legs. Swimming as propulsion through water by the movement of limbs, tail, or fins of animals is often studied as a form of PHYSICAL EXERTION or endurance.
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015982 Bias Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions. Aggregation Bias,Bias, Aggregation,Bias, Ecological,Bias, Statistical,Bias, Systematic,Ecological Bias,Outcome Measurement Errors,Statistical Bias,Systematic Bias,Bias, Epidemiologic,Biases,Biases, Ecological,Biases, Statistical,Ecological Biases,Ecological Fallacies,Ecological Fallacy,Epidemiologic Biases,Experimental Bias,Fallacies, Ecological,Fallacy, Ecological,Scientific Bias,Statistical Biases,Truncation Bias,Truncation Biases,Bias, Experimental,Bias, Scientific,Bias, Truncation,Biase, Epidemiologic,Biases, Epidemiologic,Biases, Truncation,Epidemiologic Biase,Error, Outcome Measurement,Errors, Outcome Measurement,Outcome Measurement Error
D055815 Young Adult A person between 19 and 24 years of age. Adult, Young,Adults, Young,Young Adults

Related Publications

Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
May 2017, Journal of sports sciences,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
November 2021, Sports biomechanics,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
October 2011, Human movement science,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
June 2024, Sports biomechanics,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
March 2022, International journal of environmental research and public health,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
December 2014, Human movement science,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
January 2022, Frontiers in sports and active living,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
May 2024, Sports biomechanics,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
February 2023, Sports biomechanics,
Chris Connaboy, and Simon Coleman, and Gavin Moir, and Ross Sanders
September 2023, Nature communications,
Copied contents to your clipboard!