An evolutionary genome scan for longevity-related natural selection in mammals. 2010

Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France. rjobson@univ-montp2.fr

Aging is thought to occur through the accumulation of biochemical damage affecting DNA, proteins, and lipids. The major source of cellular damage involves the generation of reactive oxygen species produced during mitochondrial respiratory activity of the electron transport chain. Energetic metabolism, antioxidative processes, genome maintenance, and cell cycle are the cellular functions most commonly associated with aging, from experimental studies of model organisms. The significance of these experiments with respect to longevity-related selective constraints in nature remains unclear. Here we took a phylogenomic approach to identify the genetic targets of natural selection for elongated life span in mammals. By comparing the nonsynonymous and synonymous evolution of approximately 5.7 million codon sites across 25 species, we identify codons and genes showing a stronger level of amino acid conservation in long-lived than in short-lived lineages. We show that genes involved in lipid composition and (collagen associated) vitamin C binding have collectively undergone increased selective pressure in long-lived species, whereas genes involved in DNA replication/repair or antioxidation have not. Most of the candidate genes experimentally associated with aging (e.g., PolG, Sod, Foxo) have played no detectable role in the evolution of longevity in mammals. A large body of current medical research aims at discovering how to increase longevity in human. In this study, we uncovered the way natural selection has completed this task during mammalian evolution. Cellular membrane and extracellular collagen composition, not genome integrity, have apparently been the optimized features.

UI MeSH Term Description Entries
D008136 Longevity The normal length of time of an organism's life. Length of Life,Life Span,Lifespan,Life Spans,Lifespans
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural

Related Publications

Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
October 2011, Biogerontology,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
October 2008, Journal of molecular evolution,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
December 2015, PLoS genetics,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
January 2022, Frontiers in endocrinology,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
January 2015, PloS one,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
January 1989, Growth, development, and aging : GDA,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
December 2010, Biology letters,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
July 2015, Innate immunity,
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
May 2021, Innovation (Cambridge (Mass.)),
Richard W Jobson, and Benoit Nabholz, and Nicolas Galtier
June 2009, PloS one,
Copied contents to your clipboard!