Characterization of recessive (mediator-) revertants from NIH 3T3 cells transformed with a c-H-ras oncogene. 1991

H Yamada, and T Omata-Yamada, and P Lengyel
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.

We have reported earlier the isolation of two recessive, serum- and anchorage-dependent revertants from an NIH 3T3 line which had been transformed with multiple copies of a c-H-ras oncogene. In both revertants the oncogene was fully expressed and fusion of either revertant with normal (untransformed) cells or of the two revertants with one another resulted in transformed progeny. These, and other data indicate that the transforming activity of the c-H-ras oncogene is impaired in the two revertants, in consequence of defects in distinct genes needed to mediate this activity. Here, we describe some of the biochemical features of the revertants. In both of these (as in the transformed line) the bulk of the ras-p21 protein was found in the membrane fraction. This suggests proper posttranslational processing. Furthermore, no difference was detected either in the ras-p21 protein GTPase stimulating activity of GAP or in the extent of GAP-tyrosine phosphorylation among growing cultures of the two revertants, the transformed line and the parental NIH 3T3 line. The level of glucose transporter mRNA was severalfold higher in the transformed line than in the NIH 3T3 line. In the two revertants, however, the level was as low as that in the NIH 3T3 line. This indicates that the reversion impaired the effect of the c-H-ras oncogene on transcription. The raf oncogene (proposed to increase transcription factor activity) could retransform both revertants. Moreover, as revealed in experiments with growing cultures, neither transformation by the c-H-ras oncogene nor reversion from the transformed state altered the electrophoretic mobility of the raf protein or the level of its actin kinase activity. These results suggest that transformation by the c-H-ras oncogene is not mediated by the activation of raf protein kinase. The tyrosine phosphorylation of the p34cdc2 protein kinase (a cell cycle regulatory enzyme) was severalfold higher in the transformed line than in the NIH 3T3 line. The level of p34cdc2 protein kinase phosphorylation was as high in the R260 revertant as in the transformed line and as low in the R116 revertant as in the NIH 3T3 line. We are attempting to identify the defective mediator genes impairing the transforming activity of the c-H-ras oncogene in the two revertants.

UI MeSH Term Description Entries
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

H Yamada, and T Omata-Yamada, and P Lengyel
January 1990, Experimental cell research,
H Yamada, and T Omata-Yamada, and P Lengyel
July 1992, Molecular and cellular biology,
H Yamada, and T Omata-Yamada, and P Lengyel
January 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire,
H Yamada, and T Omata-Yamada, and P Lengyel
March 1988, The Journal of biological chemistry,
H Yamada, and T Omata-Yamada, and P Lengyel
February 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
H Yamada, and T Omata-Yamada, and P Lengyel
January 1986, Invasion & metastasis,
H Yamada, and T Omata-Yamada, and P Lengyel
April 1989, The American journal of physiology,
H Yamada, and T Omata-Yamada, and P Lengyel
June 1990, Cell biology international reports,
Copied contents to your clipboard!