Respiratory competence of Dictyostelium discoideum spores. 1977

L Kobilinksy, and D S Beattie

Analysis of the respiratory chain of spores of Dictyostelium discoideum, which lack a cyanide-sensitive respiration, indicated that cytochromes a-a3, b, and c-c1 are present at levels identical to those found in the vegetative amoebae. The specific activities of enzymes of both the respiratory chain and the citric acid cycle in the 600 x g supernatant fraction of sonically treated spores were at least as high as in similar preparations of amoebae. The activities of glutamic dehydrogenase and oligomycin-sensitive adenosine triphosphatase were reduced in the spores 30 and 56%, respectively. Intact spores appeared to lack a cyanide-sensitive respiration as a result of inadequate quantities of respiratory substrate and, more importantly, as a result of a lack of the cofactor nicotinamide adenine dinucleotide. The emergence phase of spore germination was sensitive to the antibiotic chloramphenicol, which is a specific inhibitor of mitochondrial protein synthesis. It is concluded that germination requires the early synthesis of oxidized nicotinamide adenine dinucleotide and generation of respiratory substrates and one or more mitochondrially synthesized proteins.

UI MeSH Term Description Entries
D009235 Myxomycetes A division of organisms that exist vegetatively as complex mobile plasmodia, reproduce by means of spores, and have complex life cycles. They are now classed as protozoa but formerly were considered fungi. Myxomycota,Protosteliomycetes,Slime Molds, Plasmodial,Slime Molds, True,Mold, Plasmodial Slime,Mold, True Slime,Molds, Plasmodial Slime,Molds, True Slime,Myxomycete,Myxomycotas,Plasmodial Slime Mold,Plasmodial Slime Molds,Protosteliomycete,Slime Mold, Plasmodial,Slime Mold, True,True Slime Mold,True Slime Molds
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal

Related Publications

L Kobilinksy, and D S Beattie
November 1968, Journal of bacteriology,
L Kobilinksy, and D S Beattie
November 1969, Journal of bacteriology,
L Kobilinksy, and D S Beattie
December 1976, Canadian journal of microbiology,
L Kobilinksy, and D S Beattie
February 1979, Journal of bacteriology,
L Kobilinksy, and D S Beattie
August 1994, Cell structure and function,
L Kobilinksy, and D S Beattie
January 1985, Developmental biology,
L Kobilinksy, and D S Beattie
July 1988, Biochemical and biophysical research communications,
L Kobilinksy, and D S Beattie
February 1973, Journal of bacteriology,
L Kobilinksy, and D S Beattie
February 1980, Journal of bacteriology,
L Kobilinksy, and D S Beattie
June 1987, Journal of radiation research,
Copied contents to your clipboard!