DNA sequence analysis of revertants of the hisD3052 allele of Salmonella typhimurium TA98 using the polymerase chain reaction and direct sequencing: application to 1-nitropyrene-induced revertants. 1991

D A Bell, and J G Levine, and D M DeMarini
Genetic Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.

We have used the polymerase chain reaction (PCR) to speed the DNA sequence analysis of revertants of Salmonella typhimurium TA98. Briefly, a crude DNA extract from a single colony was prepared and used in an asymmetric PCR to amplify a 328-bp fragment containing the hisD3052 mutation approximately in the center. Following ultrafiltration, the ssDNA was sequenced using an end-labeled probe and dideoxy sequencing. The most frequent mutation among the revertants was a -2 deletion of GC or CG within the sequence CGCGCGCG, which is upstream of the hisD3052 mutation. This deletion occurred in 38% (6/16) of the spontaneous (-S9) revertants and in 94% (15/16) of a set of 1-nitropyrene-induced revertants. Other mutations, mostly deletions but also some complex mutations (i.e., single mutational events involving a combination of insertions, deletions, and substitutions), occurred within quasipalindromic regions of DNA. Possible mutational mechanisms are discussed, and the results with 1-NP are compared to those obtained in other systems.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D011721 Pyrenes A group of condensed ring hydrocarbons.
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

D A Bell, and J G Levine, and D M DeMarini
September 1988, Mutation research,
D A Bell, and J G Levine, and D M DeMarini
January 1992, Environmental and molecular mutagenesis,
D A Bell, and J G Levine, and D M DeMarini
January 1990, Progress in clinical and biological research,
D A Bell, and J G Levine, and D M DeMarini
January 1994, Analytical biochemistry,
D A Bell, and J G Levine, and D M DeMarini
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
D A Bell, and J G Levine, and D M DeMarini
January 1991, BioTechniques,
Copied contents to your clipboard!