Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder. Effect of water flow. 1977

R M Zusman, and H R Keiser, and J S Handler

Prostaglandin E biosynthesis and its effect on water permeability were investigated in the toad urinary bladder. Arginine vasopressin (1 mU/ml) increased prostaglandin E (PGE) biosynthesis from 0.5+/-0.1 to 5.0+/-0.4 pmol/min per hemibladder (mean +/-SEM, n= 8, P less than 0.001). Maximal vasopressin-stimulated PGE biosynthesis, 6.4+/-0.2 pmol/min per hemibladder, occurred at vasopressin concentrations in excess of 3 mU/ml. Half-maximal stimulation of PGE biosynthesis occurred at a vasopressin concentration of approximately 0.7 mU/ml, whereas half-maximal stimulation of water flow occurred at a vasopressin concentration of approximately 5 mU/ml. Vasopressin-stimulated PGE biosynthesis did not depend on water flow along an osmotic gradient or upon sodium transport. Thin-layer chromatographic analysis of the lipids released from hemibladders labeled with tritium-arachidonic acid revealed that vasopressin stimulates the release of arachidonic acid from intracellular lipid stores without affecting the percentage of free arachidonic acid converted to PGE. Neither cyclic AMP nor theophylline stimulated PGE biosynthesis although they mimic arginine vasopressin (AVP) in stimulating water permeability. Biosynthesis of PGE was inhibited by mepacrine, a phospholipase inhibitor, and by agents that inhibit arachidonic acid oxygenase. The inhibition of PGE biosynthesis resulted in augmented vasopressin- and theophylline-stimulated water flow, but had no effect on cyclic AMP-stimulated water flow. We interpret these results to mean that endogenous PGE inhibits basal and vasopressin-stimulated adenylate cyclase activity. In contrast to the effects of AVP on permeability and transport, AVP stimulates PGE biosynthesis by a mechanism that does not depend on an increase in cellular cyclic AMP levels. The water permeability response of the toad urinary bladder to vasopressin is inhibited by PGE synthesized by the bladder in response to vasopressin.

UI MeSH Term Description Entries
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011796 Quinacrine An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2. Mepacrine,Acrichine,Atabrine,Atebrin,Quinacrine Dihydrochloride,Quinacrine Dihydrochloride, Dihydrate,Quinacrine Dihyrochloride, (R)-Isomer,Quinacrine Dihyrochloride, (S)-Isomer,Quinacrine Dimesylate,Quinacrine Hydrochloride,Quinacrine Monoacetate,Quinacrine Monohydrochloride,Quinacrine Monomesylate,Quinacrine, (+-)-Isomer,Quinacrine, (R)-Isomer,Quinacrine, (S)-Isomer,Dihydrochloride, Quinacrine,Dimesylate, Quinacrine,Hydrochloride, Quinacrine,Monoacetate, Quinacrine,Monohydrochloride, Quinacrine,Monomesylate, Quinacrine
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic

Related Publications

R M Zusman, and H R Keiser, and J S Handler
July 1983, The American journal of physiology,
R M Zusman, and H R Keiser, and J S Handler
June 1980, Life sciences,
R M Zusman, and H R Keiser, and J S Handler
January 1988, The American journal of physiology,
R M Zusman, and H R Keiser, and J S Handler
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
R M Zusman, and H R Keiser, and J S Handler
January 1981, The Journal of membrane biology,
R M Zusman, and H R Keiser, and J S Handler
March 1983, The Journal of laboratory and clinical medicine,
R M Zusman, and H R Keiser, and J S Handler
April 1971, Annals of the New York Academy of Sciences,
R M Zusman, and H R Keiser, and J S Handler
January 1987, Pharmacology,
R M Zusman, and H R Keiser, and J S Handler
January 1989, Biology of the cell,
Copied contents to your clipboard!