Inducible proteins binding to the murine thymidine kinase promoter in late G1/S phase. 1991

Q P Dou, and J L Fridovich-Keil, and A B Pardee
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.

By performing DNase I footprint and band-shift analyses of a 170-base-pair region of the murine thymidine kinase promoter, we identified an inducible DNA binding activity that we named Yi. Yi binding activity was not detected in G0 and G1 extracts, but it was observed as cells crossed the G1/S boundary. Yi proteins bind specifically to a consensus sequence (CCCNCNNNCT) found at three distinct sites in this promoter region. We also observed a murine Sp1 binding activity that was constitutive throughout the cell cycle. We propose that the G1/S-specific Yi binding is important for murine thymidine kinase gene regulation and perhaps also for initiation of DNA synthesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

Q P Dou, and J L Fridovich-Keil, and A B Pardee
July 1990, Molecular and cellular biology,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
June 1995, Journal of cellular physiology,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
January 1994, The Journal of biological chemistry,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
July 2006, CSH protocols,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
February 1992, The Journal of biological chemistry,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
December 1994, Biochemical and biophysical research communications,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
February 1992, Gene,
Q P Dou, and J L Fridovich-Keil, and A B Pardee
April 1999, Genes to cells : devoted to molecular & cellular mechanisms,
Copied contents to your clipboard!