Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. 1991

D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

Recent studies have shown that at the same endsystolic volume, ejecting beats can achieve a higher end-systolic pressure than isovolumic beats. The purpose of this study was to assess the metabolic cost, in terms of oxygen consumption (MVO2), and efficiency, in terms of the relation between MVO2 and pressure-volume area (PVA), of this increase in strength during ejection. The slope of the end-systolic pressure-volume relation (ESPVR) (Ees) was greater during ejecting than isovolumic contractions when ejection fraction (EF) was greater than approximately 30%, indicating an increase in contractile strength. The difference in Ees between the two modes of contraction was as much as 30% at EFs of 60%. In contrast, the slope of the MVO2-PVA relation was less during ejecting than isovolumic contractions, indicating a decrease in MVO2 at any given PVA. The difference in slope was as much as 20% at EFs of 60%. Thus afterload conditions, allowing substantial fiber shortening, shift the ESPVR toward greater contractile strength and increase the metabolic efficiency when viewed in terms of the relation between MVO2 and total mechanical energy generation (PVA) by the ventricle. This may reflect an energetically favorable effect of shortening on muscle force-generating capability.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
February 1985, Heart and vessels,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
December 2003, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
January 1984, The Japanese journal of physiology,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
January 1976, Cardiologia pratica,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
June 1988, The American journal of physiology,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
December 1971, The American journal of physiology,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
March 1983, Circulation research,
D Burkhoff, and P P de Tombe, and W C Hunter, and D A Kass
March 1995, Cardiovascular research,
Copied contents to your clipboard!