Influence of lipid-bilayer-associated molecules on lipid-vesicle adsorption. 2010

Kristian Dimitrievski
Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden. kristian.dimitrievski@chalmers.se

Supported lipid bilayers (SLBs) containing different types of bilayer-associated molecules (membrane-bound molecules) where one part of the molecule resides inside the lipid bilayer and another part of the molecule sticks out of the bilayer (e.g., membrane proteins) are important biophysical model systems. SLBs are commonly formed via lipid vesicle adsorption on certain surfaces (e.g., SiO(2)). However, vesicles doped with different types of (bio)molecules often do not form an SLB on the surface, and the reasons for this are not clear. Using a newly developed model of a lipid bilayer, simulations were performed to clarify the influence of the bilayer-associated molecules on vesicle adsorption and rupture. It is shown that by increasing the concentration of membrane-bound molecules in the vesicles the tendency for vesicle rupture decreases markedly and for a certain concentration rupture does not happen. The reason for this is that vesicles containing significant concentrations of such molecules tend to deform less on the surface (lower vesicle strain), especially for a significantly corrugated bilayer-surface potential. After vesicle rupture, membrane-bound molecules face either the surface or the solution in the resulting bilayer patch on the surface, depending on whether the molecules point outward or inward in the original vesicle, respectively. Vesicle surface diffusion is also studied for weak and strong surface corrugation, where vesicles are found to be almost immobile in the latter case.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions

Related Publications

Kristian Dimitrievski
April 1980, Biophysical journal,
Kristian Dimitrievski
December 2004, Langmuir : the ACS journal of surfaces and colloids,
Kristian Dimitrievski
September 2018, The journal of physical chemistry letters,
Kristian Dimitrievski
October 2010, European biophysics journal : EBJ,
Kristian Dimitrievski
February 2020, Langmuir : the ACS journal of surfaces and colloids,
Kristian Dimitrievski
September 1996, Biophysical journal,
Kristian Dimitrievski
February 2014, Journal of visualized experiments : JoVE,
Kristian Dimitrievski
February 2010, ACS chemical neuroscience,
Copied contents to your clipboard!